25 research outputs found
Critical properties of the metal-insulator transition in anisotropic systems
We study the three-dimensional Anderson model of localization with
anisotropic hopping, i.e., weakly coupled chains and weakly coupled planes. In
our extensive numerical study we identify and characterize the metal-insulator
transition by means of the transfer-matrix method. The values of the critical
disorder obtained are consistent with results of previous studies,
including multifractal analysis of the wave functions and energy level
statistics. decreases from its isotropic value with a power law as a
function of anisotropy. Using high accuracy data for large system sizes we
estimate the critical exponent as . This is in agreement with
its value in the isotropic case and in other models of the orthogonal
universality class.Comment: 17 pages, 7 figures, requires svjour.csl and svepj.clo (included),
submitted to EPJ
An Algorithm for the Computation of Eigenvalues, Spectral Zeta Functions and Zeta-Determinants on Hyperbolic Surfaces
We present a rigorous scheme that makes it possible to compute eigenvalues of
the Laplace operator on hyperbolic surfaces within a given precision. The
method is based on an adaptation of the method of particular solutions to the
case of locally symmetric spaces and on explicit estimates for the
approximation of eigenfunctions on hyperbolic surfaces by certain basis
functions. It can be applied to check whether or not there is an eigenvalue in
an \epsilon-neighborhood of a given number \lambda>0. This makes it possible to
find all the eigenvalues in a specified interval, up to a given precision with
rigorous error estimates. The method converges exponentially fast with the
number of basis functions used. Combining the knowledge of the eigenvalues with
the Selberg trace formula we are able to compute values and derivatives of the
spectral zeta function again with error bounds. As an example we calculate the
spectral determinant and the Casimir energy of the Bolza surface and other
surfaces.Comment: 48 pages, 8 figures, LaTeX, some more typos corrected, more Figures
added, some explanations are more detailed now, Fenchel-Nielsen coordinates
and numbers for the surface with symmetry group of order 10 corrected,
datafiles are now available as ancillary file
Analysis of Schr\"odinger operators with inverse square potentials I: regularity results in 3D
Let be a potential on \RR^3 that is smooth everywhere except at a
discrete set \maS of points, where it has singularities of the form
, with for close to and continuous on
\RR^3 with for p \in \maS. Also assume that and
are smooth outside \maS and is smooth in polar coordinates around each
singular point. We either assume that is periodic or that the set \maS is
finite and extends to a smooth function on the radial compactification of
\RR^3 that is bounded outside a compact set containing \maS. In the
periodic case, we let be the periodicity lattice and define \TT :=
\RR^3/ \Lambda. We obtain regularity results in weighted Sobolev space for the
eigenfunctions of the Schr\"odinger-type operator acting on
L^2(\TT), as well as for the induced \vt k--Hamiltonians \Hk obtained by
restricting the action of to Bloch waves. Under some additional
assumptions, we extend these regularity and solvability results to the
non-periodic case. We sketch some applications to approximation of
eigenfunctions and eigenvalues that will be studied in more detail in a second
paper.Comment: 15 pages, to appear in Bull. Math. Soc. Sci. Math. Roumanie, vol. 55
(103), no. 2/201
Two applications of the gauge/gravity duality
The anti de Sitter/conformal field theory correspondence, or AdS/CFT for short, is an equivalence between a string theory with gravity defined on a space and a quantum field theory without gravity on the boundary of this space. The correspondence makes it possible to compute observables in strongly interacting field theories. We will focus on the weak form of correspondence, which explains how classical supergravity in five dimensions is related to four dimensional strongly interacting field theory. This thesis is divided into two parts. The first part introduces the correspondence, and the second part contains three original research publications. The publications present two different applications of the correspondence.
The first application is to quantum chromodynamics. In particular we derive results on the spatial string tension at finite temperature and thermodynamics of quantum chromodynamics.
The second application is to condensed matter physics, namely quantum Hall transitions. We derive results for frequency independent and dependent conductivities in quantum Hall transitions, and find a universal behavior in our solutions.Tuntemamme fysiikka selittÀÀ hyvin hiukkasfysiikan ja painovoiman ilmiöitÀ - erikseen. NÀitÀ kuvaavien teorioiden yhdistÀminen on ollut yksi suurimmista ongelmista teoreettisessa fysiikassa viimeisen sadan vuoden ajan. Vuonna 1998 tiedeyhteisö löysi mittagravitaatiodualiteetin, joka yhdistÀÀ tietyn gravitaatioteorian ja kenttÀteorian.
Mittagravitaatiodualiteetti on yhteys tyypin IIB sÀieteorian ja supersymmetrisen kvanttikenttÀteorian vÀlillÀ. Erikoisen mielenkiintoiseksi dualiteetin tekee se, ettÀ sÀieteoria sisÀltÀÀ gravitaation ja se on mÀÀritelty viidessÀ ulottuvuudessa, kenttÀteoria puolestaan elÀÀ tÀmÀn avaruuden reunalla neljÀssÀ ulottuvuudessa ilman gravitaatiota.
Dualiteetti perustuu holografiaperiaatteeseen. Periaatteen mukaan gravitaatioteorian vapausasteet voidaan kuvata tÀmÀn teorian reuna-avaruudessa. TÀmÀ herÀttÀÀ luonnollisen kysymyksen: kuinka pieneen tilaan voimme koodata kaiken tiedon, voimmeko kuvata koko maailman hiekanjyvÀsessÀ?
Dualiteettia voidaan hyödyntÀÀ kvanttikromodynamiikan syvempÀÀn ymmÀrrykseen. Erityisesti hÀiriöteorian ulottumattomissa olevat laskut ovat olleet ongelmallisia fyysikoille. Dualiteetti tarjoaa luonnollisen tavan tarkastella tÀllaisia, vahvan kytkennÀn, teorioita.
VÀitöskirjan yksi pÀÀtulos kvanttikromodynamiikasta liittyy kvarkkien potentiaalin mÀÀrittÀmiseen. Saamamme tulokset yhtyvÀt hyvin tunnettujen tulosten kanssa, joita on aiemmin esitetty kirjallisuudessa eri menetelmien avulla laskettuina. Toinen tulos tarkastelee kvanttikromodynamiikan yleistÀ termodynamiikkaa ja kuinka voimme ymmÀrtÀÀ sitÀ dualiteetin avulla.
Dualiteettia voidaan soveltaa myös kiinteÀn olomuodon fysiikkaan. Yksi erityinen esimerkki on kvantittunut Hallin ilmiö, jota vÀitöskirjassa tarkastellaan. VÀitöstyössÀ laskettiin sÀhkönjohtavuus siirtymissÀ eri tilojen vÀlillÀ. TÀmÀ vertautuu hyvin kirjallisuudessa aiemmin esitettyihin tuloksiin
AC transport at holographic quantum hall transitions
26 pages including 7 figures. (v2): correction to section 3, added reference. (v3): clarified comparison to previous work, (v4): a couple of comments and references addedWe compute AC electrical transport at quantum Hall critical points, as modeled by intersecting branes and gauge/gravity duality. We compare our results with a previous field theory computation by Sachdev, and find unexpectedly good agreement. We also give general results for DC Hall and longitudinal conductivities valid for a wide class of quantum Hall transitions, as well as (semi)analytical results for AC quantities in special limits. Our results exhibit a surprising degree of universality; for example, we find that the high frequency behavior, including subleading behavior, is identical for our entire class of theories.Peer reviewe
Analysis of Schrodinger operators with inverse square potentials II: FEM and approximation of eigenfunctions in the periodic case
In this article, we consider the problem of optimal approximation of eigenfunctions of Schrödinger operators
with isolated inverse square potentials and of solutions to equations involving such operators. It is known in
this situation that the finite element method performs poorly with standard meshes. We construct an alter-
native class of graded meshes, and prove and numerically test optimal approximation results for the finite
element method using these meshes. Our numerical tests are in good agreement with our theoretical results
Analysis of Schrodinger operators with inverse square potentials I: regularity results in 3D
Let V be a potential on R3 that is smooth everywhere except at a discrete set
S of points, where it has singularities of the form Z/ 2, with (x) = |x â p| for x close to p
and Z continuous on R3 with Z(p) > â1/4 for p 2 S. Also assume that and Z are smooth
outside S and Z is smooth in polar coordinates around each singular point. We either assume
that V is periodic or that the set S is finite and V extends to a smooth function on the radial
compactification of R3 that is bounded outside a compact set containing S. In the periodic
case, we let be the periodicity lattice and define T := R3/ . We obtain regularity results in
weighted Sobolev space for the eigenfunctions of the Schršodinger-type operator H = â + V
acting on L2(T), as well as for the induced kâHamiltonians Hk obtained by restricting the
action of H to Bloch waves. Under some additional assumptions, we extend these regularity
and solvability results to the non-periodic case. We sketch some applications to approximation
of eigenfunctions and eigenvalues that will be studied in more detail in a second paper
Smoothed universal correlations in the two-dimensional Anderson model
We report on calculations of smoothed spectral correlations in the
two-dimensional Anderson model for weak disorder. As pointed out in (M.
Wilkinson, J. Phys. A: Math. Gen. 21, 1173 (1988)), an analysis of the
smoothing dependence of the correlation functions provides a sensitive means of
establishing consistency with random matrix theory. We use a semiclassical
approach to describe these fluctuations and offer a detailed comparison between
numerical and analytical calculations for an exhaustive set of two-point
correlation functions. We consider parametric correlation functions with an
external Aharonov-Bohm flux as a parameter and discuss two cases, namely broken
time-reversal invariance and partial breaking of time-reversal invariance.
Three types of correlation functions are considered: density-of-states,
velocity and matrix element correlation functions. For the values of smoothing
parameter close to the mean level spacing the semiclassical expressions and the
numerical results agree quite well in the whole range of the magnetic flux.Comment: 12 pages, 14 figures submitted to Phys. Rev.
The CCP4 suite : integrative software for macromolecular crystallography
The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world
Rare events and other deviations from universality in disordered conductors
Gegenstand dieser Arbeit ist die Untersuchung von statistischen Eigenschaften der ungeordneten Metallen im Rahmen des Anderson-Modells der Lokalisierung. Betrachtet wird ein Elektron auf einem Gitter mit "NĂ€chste-Nachbarn-HĂŒpfen" und zufĂ€lligen potentiellen Gitterplatzenergien. Wegen der ZufĂ€lligkeit zeigen die Elektroneigenschaften, zum Beispiel die Eigenenergien und -zustĂ€nde, irregulĂ€re Fluktuationen, deren Statistik von der Amplitude der Potentialenergie abhĂ€ngt. Mit steigender Amplitude wird das Elektron immer mehr lokalisiert, was schliesslich zum Metall-Isolator-Ăbergang fĂŒhrt. In dieser Arbeit wird die Statistik insbesondere im metallischen Bereich untersucht, und dadurch der Einfluss der Lokalisierung an den Eigenschaften des Systems betrachtet. Zuerst wird die Statistik der Matrixelemente des Dipoloperators untersucht. Die numerischen Ergebnisse fĂŒr das Anderson-Modell werden mit Vorhersagen der semiklassischen NĂ€herung verglichen. Dann wird der spektrale Strukturfaktor betrachtet, der als Fourier-Transformation der zwei-Punkt Zustandsdichtekorrelationsfunktion definiert wird. Dabei werden besonders die nichtuniversellen Abweichungen von den Vorhersagen der Zufallsmatrixtheorie untersucht. Die Abweichungen werden numerisch ermittelt, und danach mit den analytischen Vorhersagen verglichen. Die Statistik der Wellenfunktionen zeigt ebenfalls Abweichungen von der Zufallsmatrixtheorie. Die Abweichungen sind am gröĂten fĂŒr Statistik der groĂen Wellenfunktionsamplituden, die sogenannte seltene Ereignisse darstellen. Die analytischen Vorhersagen fĂŒr diese Statistik sind teilweise widersprĂŒchlich, und deshalb ist es interessant, sie auch numerisch zu untersuchen