64 research outputs found

    Oral tongue cancer gene expression profiling: Identification of novel potential prognosticators by oligonucleotide microarray analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study is aimed at identifying potential candidate genes as prognostic markers in human oral tongue squamous cell carcinoma (SCC) by large scale gene expression profiling.</p> <p>Methods</p> <p>The gene expression profile of patients (n=37) with oral tongue SCC were analyzed using Affymetrix HG_U95Av2 high-density oligonucleotide arrays. Patients (n=20) from which there were available tumor and matched normal mucosa were grouped into stage (early vs. late) and nodal disease (node positive vs. node negative) subgroups and genes differentially expressed in tumor vs. normal and between the subgroups were identified. Three genes, <it>GLUT3</it>, <it>HSAL2</it>, and <it>PACE4</it>, were selected for their potential biological significance in a larger cohort of 49 patients via quantitative real-time RT-PCR.</p> <p>Results</p> <p>Hierarchical clustering analyses failed to show significant segregation of patients. In patients (n=20) with available tumor and matched normal mucosa, 77 genes were found to be differentially expressed (P< 0.05) in the tongue tumor samples compared to their matched normal controls. Among the 45 over-expressed genes, <it>MMP-1</it> encoding interstitial collagenase showed the highest level of increase (average: 34.18 folds). Using the criterion of two-fold or greater as overexpression, 30.6%, 24.5% and 26.5% of patients showed high levels of <it>GLUT3</it>, <it>HSAL2</it> and <it>PACE4</it>, respectively. Univariate analyses demonstrated that <it>GLUT3</it> over-expression correlated with depth of invasion (P<0.0001), tumor size (P=0.024), pathological stage (P=0.009) and recurrence (P=0.038). <it>HSAL2</it> was positively associated with depth of invasion (P=0.015) and advanced T stage (P=0.047). In survival studies, only <it>GLUT3</it> showed a prognostic value with disease-free (P=0.049), relapse-free (P=0.002) and overall survival (P=0.003). <it>PACE4</it> mRNA expression failed to show correlation with any of the relevant parameters. </p> <p>Conclusion</p> <p>The characterization of genes identified to be significant predictors of prognosis by oligonucleotide microarray and further validation by real-time RT-PCR offers a powerful strategy for identification of novel targets for prognostication and treatment of oral tongue carcinoma.</p

    Clinical relevance of nine transcriptional molecular markers for the diagnosis of head and neck squamous cell carcinoma in tissue and saliva rinse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Analysis of 23 published transcriptome studies allowed us to identify nine genes displaying frequent alterations in HNSCC (<it>FN1, MMP1, PLAU, SPARC</it>, <it>IL1RN, KRT4, KRT13, MAL</it>, and <it>TGM3</it>). We aimed to independently confirm these dysregulations and to identify potential relationships with clinical data for diagnostic, staging and prognostic purposes either at the tissue level or in saliva rinse.</p> <p>Methods</p> <p>For a period of two years, we systematically collected tumor tissue, normal matched mucosa and saliva of patients diagnosed with primary untreated HNSCC. Expression levels of the nine genes of interest were measured by RT-qPCR in tumor and healthy matched mucosa from 46 patients. <it>MMP1 </it>expression level was measured by RT-qPCR in the salivary rinse of 51 HNSCC patients and 18 control cases.</p> <p>Results</p> <p>Dysregulation of the nine genes was confirmed by the Wilcoxon test. <it>IL1RN, MAL </it>and <it>MMP1 </it>were the most efficient diagnostic markers of HNSCC, with ROC AUC > 0.95 and both sensitivity and specificity above 91%. No clinically relevant correlation was found between gene expression level in tumor and T stage, N stage, tumor grade, global survival or disease-free survival. Our preliminary results suggests that with 100% specificity, <it>MMP1 </it>detection in saliva rinse is potentially useful for non invasive diagnosis of HNSCC of the oral cavity or oropharynx, but technical improvement is needed since sensitivity was only 20%.</p> <p>Conclusion</p> <p><it>IL1RN, MAL </it>and <it>MMP1 </it>are prospective tumor diagnostic markers for HNSCC. <it>MMP1 </it>overexpression is the most promising marker, and its detection could help identify tumor cells in tissue or saliva.</p

    Bedform migration in a mixed sand and cohesive clay intertidal environment and implications for bed material transport predictions

    Get PDF
    Many coastal and estuarine environments are dominated by mixtures of non-cohesive sand and cohesive mud. The migration rate of bedforms, such as ripples and dunes, in these environments is important in determining bed material transport rates to inform and assess numerical models of sediment transport and geomorphology. However, these models tend to ignore parameters describing the physical and biological cohesion (resulting from clay and extracellular polymeric substances, EPS) in natural mixed sediment, largely because of a scarcity of relevant laboratory and field data. To address this gap in knowledge, data were collected on intertidal flats over a spring-neap cycle to determine the bed material transport rates of bedforms in biologically-active mixed sand-mud. Bed cohesive composition changed from below 2 vol% up to 5.4 vol% cohesive clay, as the tide progressed from spring towards neap. The amount of EPS in the bed sediment was found to vary linearly with the clay content. Using multiple linear regression, the transport rate was found to depend on the Shields stress parameter and the bed cohesive clay content. The transport rates decreased with increasing cohesive clay and EPS content, when these contents were below 2.8 vol% and 0.05 wt%, respectively. Above these limits, bedform migration and bed material transport was not detectable by the instruments in the study area. These limits are consistent with recently conducted sand-clay and sand-EPS laboratory experiments on bedform development. This work has important implications for the circumstances under which existing sand-only bedform migration transport formulae may be applied in a mixed sand-clay environment, particularly as 2.8 vol% cohesive clay is well within the commonly adopted definition of “clean sand”

    Defining Global Gene Expression Changes of the Hypothalamic-Pituitary-Gonadal Axis in Female sGnRH-Antisense Transgenic Common Carp (Cyprinus carpio)

    Get PDF
    BACKGROUND: The hypothalamic-pituitary-gonadal (HPG) axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH) expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio) with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH) and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus), 16 and 12 (pituitary), 119 and 93 (ovary), respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. CONCLUSIONS/SIGNIFICANCE: This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the reproductive system of teleost fish

    Applications of microarray technology in breast cancer research

    Get PDF
    Microarrays provide a versatile platform for utilizing information from the Human Genome Project to benefit human health. This article reviews the ways in which microarray technology may be used in breast cancer research. Its diverse applications include monitoring chromosome gains and losses, tumour classification, drug discovery and development, DNA resequencing, mutation detection and investigating the mechanism of tumour development

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Zur Untersuchung und Beurtheilung des Honigs

    No full text

    Deterministic coastal morphological and sediment transport modeling: a review and discussion

    Get PDF
    Modern coastal ocean modeling systems are now capable of numerically simulating a variety of coastal and estuarine problems and can thus provide useful information for managing coastal zones. Here we review state-of-the-art Eulerian implementations of bottom-up sediment transport and morphological change in coastal ocean hydrodynamic models. In order to investigate the fate of suspended sediment in coastal and estuarine waters as well as the evolution of sea or river beds, sediment dynamics need to be represented at a scale relevant to the numerical discretized solution, and significant effort is devoted to parameterize sediment processes. We discuss boundary layer hydrodynamics and the computation of the bed shear stress. We also focus on approaches used to represent near-bed processes such as bed load transport and sediment erosion and deposition. Sediment diffusivities, settling velocities, and cohesive processes such as flocculation all have an impact on suspended sediment throughout the water column. We then describe the implementation of process parameterizations in coastal hydrodynamic models, explicitly reviewing five widely used systems. The approaches implemented in these coastal models may present distinct strengths and shortcomings with regard to some important issues for coastal zones, both numerical and physical. While these detailed limitations need to be considered as part of model assessment, more general issues also hinder present state-of-the-art models. In particular, sediment transport is inherently highly empirical, which is further compounded by issues arising from turbulence closure schemes. We conclude by suggesting some possible directions toward improving sediment dynamics understanding and coastal-scale predictive abilit
    • 

    corecore