11 research outputs found

    Rosetta FunFolDes - A general framework for the computational design of functional proteins

    Get PDF
    The robust computational design of functional proteins has the potential to deeply impact translational research and broaden our understanding of the determinants of protein function and stability. The low success rates of computational design protocols and the extensive in vitro optimization often required, highlight the challenge of designing proteins that perform essential biochemical functions, such as binding or catalysis. One of the most simplistic approaches for the design of function is to adopt functional motifs in naturally occurring proteins and transplant them to computationally designed proteins. The structural complexity of the functional motif largely determines how readily one can find host protein structures that are "designable", meaning that are likely to present the functional motif in the desired conformation. One promising route to enhance the "designability" of protein structures is to allow backbone flexibility. Here, we present a computational approach that couples conformational folding with sequence design to embed functional motifs into heterologous proteins-Rosetta Functional Folding and Design (FunFolDes). We performed extensive computational benchmarks, where we observed that the enforcement of functional requirements resulted in designs distant from the global energetic minimum of the protein. An observation consistent with several experimental studies that have revealed function-stability tradeoffs. To test the design capabilities of FunFolDes we transplanted two viral epitopes into distant structural templates including one de novo "functionless" fold, which represent two typical challenges where the designability problem arises. The designed proteins were experimentally characterized showing high binding affinities to monoclonal antibodies, making them valuable candidates for vaccine design endeavors. Overall, we present an accessible strategy to repurpose old protein folds for new functions. This may lead to important improvements on the computational design of proteins, with structurally complex functional sites, that can perform elaborate biochemical functions related to binding and catalysis

    Immunogenicity of High-Dose vs. MF59-adjuvanted vs. Standard Influenza Vaccine in Solid Organ Transplant Recipients: The STOP-FLU trial.

    Get PDF
    BACKGROUND The immunogenicity of the standard influenza vaccine is reduced in solid-organ transplant (SOT) recipients, so that new vaccination strategies are needed in this population. METHODS Adult SOT recipients from nine transplant clinics in Switzerland and Spain were enrolled if they were >3 months after transplantation. High, with stratification by organ and time from transplant. The primary outcome was vaccine response rate, defined as a ≥4-fold increase of hemagglutination-inhibition titers to at least one vaccine strain at 28 days post-vaccination. Secondary outcomes included PCR-confirmed influenza and vaccine reactogenicity. RESULTS 619 patients were randomized, 616 received the assigned vaccines, and 598 had serum available for analysis of the primary endpoint (standard, n=198; MF59-adjuvanted, n=205; high-dose, n=195 patients). Vaccine response rates were 42% (84/198) in the standard vaccine group, 60% (122/205) in the MF59-adjuvanted vaccine group, and 66% (129/195) in the high-dose vaccine group (difference in intervention vaccines vs. standard vaccine, 0.20 [97.5% CI 0.12-1]; p<0.001; difference in high-dose vs. standard vaccine, 0.24 [95% CI 0.16-1]; p<0.001; difference in MF59-adjuvanted vs. standard vaccine, 0.17 [97.5% CI 0.08-1]; p<0.001). Influenza occurred in 6% the standard, 5% in the MF59-adjuvanted, and 7% in the high-dose vaccine groups. Vaccine-related adverse events occurred more frequently in the intervention vaccine groups, but most of the events were mild. CONCLUSIONS In SOT recipients, use of an MF59-adjuvanted or a high-dose influenza vaccine was safe and resulted in a higher vaccine response rate. TRIAL REGISTRATION Clinicaltrials.gov NCT03699839

    Noncompaction of the Ventricular Myocardium Is Associated with a De Novo Mutation in the β-Myosin Heavy Chain Gene

    Get PDF
    Noncompaction of the ventricular myocardium (NVM) is the morphological hallmark of a rare familial or sporadic unclassified heart disease of heterogeneous origin. NVM results presumably from a congenital developmental error and has been traced back to single point mutations in various genes. The objective of this study was to determine the underlying genetic defect in a large German family suffering from NVM. Twenty four family members were clinically assessed using advanced imaging techniques. For molecular characterization, a genome-wide linkage analysis was undertaken and the disease locus was mapped to chromosome 14ptel-14q12. Subsequently, two genes of the disease interval, MYH6 and MYH7 (encoding the α- and β-myosin heavy chain, respectively) were sequenced, leading to the identification of a previously unknown de novo missense mutation, c.842G>C, in the gene MYH7. The mutation affects a highly conserved amino acid in the myosin subfragment-1 (R281T). In silico simulations suggest that the mutation R281T prevents the formation of a salt bridge between residues R281 and D325, thereby destabilizing the myosin head. The mutation was exclusively present in morphologically affected family members. A few members of the family displayed NVM in combination with other heart defects, such as dislocation of the tricuspid valve (Ebstein's anomaly, EA) and atrial septal defect (ASD). A high degree of clinical variability was observed, ranging from the absence of symptoms in childhood to cardiac death in the third decade of life. The data presented in this report provide first evidence that a mutation in a sarcomeric protein can cause noncompaction of the ventricular myocardium

    The phenotypic spectrum of WWOX -related disorders: 20 additional cases of WOREE syndrome and review of the literature

    Get PDF
    Purpose: Germline WWOX pathogenic variants have been associated with disorder of sex differentiation (DSD), spinocerebellar ataxia (SCA), and WWOX-related epileptic encephalopathy (WOREE syndrome). We review clinical and molecular data on WWOX-related disorders, further describing WOREE syndrome and phenotype/genotype correlations. Methods: We report clinical and molecular findings in 20 additional patients from 18 unrelated families with WOREE syndrome and biallelic pathogenic variants in the WWOX gene. Different molecular screening approaches were used (quantitative polymerase chain reaction/multiplex ligation-dependent probe amplification [qPCR/MLPA], array comparative genomic hybridization [array-CGH], Sanger sequencing, epilepsy gene panel, exome sequencing). Results: Two copy-number variations (CNVs) or two single-nucleotide variations (SNVs) were found respectively in four and nine families, with compound heterozygosity for one SNV and one CNV in five families. Eight novel missense pathogenic variants have been described. By aggregating our patients with all cases reported in the literature, 37 patients from 27 families with WOREE syndrome are known. This review suggests WOREE syndrome is a very severe epileptic encephalopathy characterized by absence of language development and acquisition of walking, early-onset drug-resistant seizures, ophthalmological involvement, and a high likelihood of premature death. The most severe clinical presentation seems to be associated with null genotypes. Conclusion: Germline pathogenic variants in WWOX are clearly associated with a severe early-onset epileptic encephalopathy. We report here the largest cohort of individuals with WOREE syndrome

    Immunogenicity of High-Dose vs. MF59-adjuvanted vs. Standard Influenza Vaccine in Solid Organ Transplant Recipients: The STOP-FLU trial.

    Get PDF
    The immunogenicity of the standard influenza vaccine is reduced in solid-organ transplant (SOT) recipients, so that new vaccination strategies are needed in this population. Adult SOT recipients from nine transplant clinics in Switzerland and Spain were enrolled if they were &gt;3 months after transplantation. High, with stratification by organ and time from transplant. The primary outcome was vaccine response rate, defined as a ≥4-fold increase of hemagglutination-inhibition titers to at least one vaccine strain at 28 days post-vaccination. Secondary outcomes included PCR-confirmed influenza and vaccine reactogenicity. 619 patients were randomized, 616 received the assigned vaccines, and 598 had serum available for analysis of the primary endpoint (standard, n=198; MF59-adjuvanted, n=205; high-dose, n=195 patients). Vaccine response rates were 42% (84/198) in the standard vaccine group, 60% (122/205) in the MF59-adjuvanted vaccine group, and 66% (129/195) in the high-dose vaccine group (difference in intervention vaccines vs. standard vaccine, 0.20 [97.5% CI 0.12-1]; p&lt;0.001; difference in high-dose vs. standard vaccine, 0.24 [95% CI 0.16-1]; p&lt;0.001; difference in MF59-adjuvanted vs. standard vaccine, 0.17 [97.5% CI 0.08-1]; p&lt;0.001). Influenza occurred in 6% the standard, 5% in the MF59-adjuvanted, and 7% in the high-dose vaccine groups. Vaccine-related adverse events occurred more frequently in the intervention vaccine groups, but most of the events were mild. In SOT recipients, use of an MF59-adjuvanted or a high-dose influenza vaccine was safe and resulted in a higher vaccine response rate. Clinicaltrials.gov NCT03699839

    Genome-wide association analysis in dilated cardiomyopathy reveals two new players in systolic heart failure on chromosomes 3p25.1 and 22q11.23

    No full text
    AIMS : Our objective was to better understand the genetic bases of dilated cardiomyopathy (DCM), a leading cause of systolic heart failure. METHODS AND RESULTS : We conducted the largest genome-wide association study performed so far in DCM, with 2719 cases and 4440 controls in the discovery population. We identified and replicated two new DCM-associated loci on chromosome 3p25.1 [lead single-nucleotide polymorphism (SNP) rs62232870, P = 8.7 × 10-11 and 7.7 × 10-4 in the discovery and replication steps, respectively] and chromosome 22q11.23 (lead SNP rs7284877, P = 3.3 × 10-8 and 1.4 × 10-3 in the discovery and replication steps, respectively), while confirming two previously identified DCM loci on chromosomes 10 and 1, BAG3 and HSPB7. A genetic risk score constructed from the number of risk alleles at these four DCM loci revealed a 27% increased risk of DCM for individuals with 8 risk alleles compared to individuals with 5 risk alleles (median of the referral population). In silico annotation and functional 4C-sequencing analyses on iPSC-derived cardiomyocytes identify SLC6A6 as the most likely DCM gene at the 3p25.1 locus. This gene encodes a taurine transporter whose involvement in myocardial dysfunction and DCM is supported by numerous observations in humans and animals. At the 22q11.23 locus, in silico and data mining annotations, and to a lesser extent functional analysis, strongly suggest SMARCB1 as the candidate culprit gene. CONCLUSION : This study provides a better understanding of the genetic architecture of DCM and sheds light on novel biological pathways underlying heart failure.Medical Genomic

    Genome-wide association analysis in dilated cardiomyopathy reveals two new players in systolic heart failure on chromosomes 3p25.1 and 22q11.23

    No full text
    Aims: Our objective was to better understand the genetic bases of dilated cardiomyopathy (DCM), a leading cause of systolic heart failure. Methods and results: We conducted the largest genome-wide association study performed so far in DCM, with 2719 cases and 4440 controls in the discovery population. We identified and replicated two new DCM-associated loci on chromosome 3p25.1 [lead single-nucleotide polymorphism (SNP) rs62232870, P = 8.7 x 10(-11) and 7.7 x 10(-4) in the discovery and replication steps, respectively] and chromosome 22q11.23 (lead SNP rs7284877, P = 3.3 x 10(-8) and 1.4 x 10(-3) in the discovery and replication steps, respectively), while confirming two previously identified DCM loci on chromosomes 10 and 1, BAG3 and HSPB7. A genetic risk score constructed from the number of risk alleles at these four DCM loci revealed a 3-fold increased risk of DCM for individuals with 8 risk alleles compared to individuals with 5 risk alleles (median of the referral population). In silico annotation and functional 4C-sequencing analyses on iPSC-derived cardiomyocytes identify SLC6A6 as the most likely DCM gene at the 3p25.1 locus. This gene encodes a taurine transporter whose involvement in myocardial dysfunction and DCM is supported by numerous observations in humans and animals. At the 22q11.23 locus, in silico and data mining annotations, and to a lesser extent functional analysis, strongly suggest SMARCB1 as the candidate culprit gene. Conclusion: This study provides a better understanding of the genetic architecture of DCM and sheds light on novel biological pathways underlying heart failure. [GRAPHICS

    Risk Scores in ST-Segment Elevation Myocardial Infarction Patients with Refractory Cardiogenic Shock and Veno-Arterial Extracorporeal Membrane Oxygenation

    No full text
    International audienceAlthough many risk models have been tested in patients implanted by veno-arterial extracorporeal membrane oxygenation (VA-ECMO), few scores assessed patients’ prognosis in the setting of ST-segment elevation myocardial infarction (STEMI) with refractory cardiogenic shock. We aimed at assessing the performance of risk scores, notably the prEdictioN of Cardiogenic shock OUtcome foR AMI patients salvaGed by VA-ECMO (ENCOURAGE) score, for predicting mortality in this particular population. This retrospective observational study included patients admitted to Tours University Hospital for STEMI with cardiogenic shock and requiring hemodynamic support by VA-ECMO. Among the fifty-one patients, the 30-day and 6-month survival rates were 63% and 56% respectively. Thirty days after VA-ECMO therapy, probabilities of mortality were 12, 17, 33, 66, 80% according to the ENCOURAGE score classes 0–12, 13–18, 19–22, 23–27, and ≥28, respectively. The ENCOURAGE score (AUC of the Receiving Operating Characteristic curve = 0.83) was significantly better compared to other risk scores. The hazard ratio for survival at 30 days for each point of the ENCOURAGE score was 1.10 (CI 95% (1.06, 1.15); p < 0.001). Decision curve analysis indicated that the ENCOURAGE score had the best clinical usefulness of the tested risk scores and the Hosmer–Lemeshow test suggested an accurate calibration. Our data suggest that the ENCOURAGE score is valid and the most relevant score to predict 30-day mortality after VA-ECMO therapy in STEMI patients with refractory cardiogenic shock. It may help decision-making teams to better select STEMI patients with shock for VA-ECMO therapy
    corecore