46 research outputs found

    Thermal electron attachment to F2

    Get PDF
    Rate constants have been measured from 300 to 700 K for thermal electron attachment to F2 using two flowing afterglow–Langmuir probe apparatuses. Dissociative attachment yielding F− is observed with a rate constant of 5.0 ± 1.3 × 10−9 cm3 s−1 at 300 K, rising to 9.6 ± 2.4 × 10−9 cm3 s−1 at 700 K, well below the previously accepted values of McCorkle et al. [D. L.McCorkle, L. G. Christophorou, A. A. Christodoulides, and L. Pichiarella, J. Chem. Phys. 85, 1966 (1986)]. The absolute concentration of F2 reaching the afterglowis verified by measuring the near-collisional rate constant (4.5 ± 1.5 × 10−10 cm3 s−1) for Ar+ + F2→ArF+ + F. Prior attempts to apply R-matrix calculations to the F2 + e− system have failed to explain previously reported thermal and nonthermal attachment rate constants along with high-resolution, low-energy attachment cross sections. The present results are reproduced exceptionally well by R-matrix calculations employing previously calculated resonance widths without adjustment

    Thermal Activation of Methane by MgO+: Temperature Dependent Kinetics, Reactive Molecular Dynamics Simulations and Statistical Modeling

    Get PDF
    The kinetics of MgO + + CH 4 was studied experimentally using the variable ion source, temperature adjustable selected ion flow tube (VISTA-SIFT) apparatus from 300 − 600 K and computationally by running and analyzing reactive atomistic simula- tions. Rate coefficients and product branching fractions were determined as a function of temperature. The reaction proceeded with a rate of k = 5 . 9 ± 1 . 5 × 10 − 10 ( T/ 300 K) − 0 . 5 ± 0 . 2 cm 3 s − 1 . MgOH + was the dominant product at all temperatures, but Mg + , the co-product of oxygen-atom transfer to form methanol, was observed with a product branching fraction of 0 . 08 ± 0 . 03( T/ 300 K) − 0 . 8 ± 0 . 7 . Reactive molecular dynamics simulations using a reactive force field, as well as a neural network trained on thousands of structures yield rate coefficients about one order of magnitude lower. This underestimation of the rates is traced back to the multireference character of the transition state [MgOCH 4 ] + . Statistical modeling of the temperature-dependent kinetics provides further insight into the reactive potential surface. The rate limiting step was found to be consistent with a four-centered activation of the C-H bond, consistent with previous calculations. The product branching was modeled as a competition between dissociation of an insertion intermediate directly after the rate- limiting transition state, and traversing a transition state corresponding to a methyl migration leading to a Mg-CH 3 OH + complex, though only if this transition state is stabilized significantly relative to the dissociated MgOH + + CH 3 product channel. An alternative non-statistical mechanism is discussed, whereby a post-transition state bifurcation in the potential surface could allow the reaction to proceed directly from the four-centered TS to the Mg-CH 3 OH + complex thereby allowing a more robust competition between the product channels

    Impact of educational interventions on adolescent attitudes and knowledge regarding vaccination: A pilot study

    Get PDF
    © 2018 Carolan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Background Current immunisation levels in England currently fall slightly below the threshold recommended by the World Health Organization, and the three-year trend for vaccination uptake is downwards. Attitudes towards vaccination can affect future decisions on whether or not to vaccinate, and this can have significant public health implications. Interventions can impact future vaccination decisions, and these interventions can take several forms. Relatively little work has been reported on the use of vaccination interventions in young people, who form the next generation of individuals likely to make vaccination decisions. Method We investigated the impact of two different types of educational intervention on attitudes towards vaccination in young people in England. A cohort of young people (n = 63) was recruited via a local school. This group was divided into three sub-groups; one (n = 21) received a presentation-based intervent ion, one (n = 26) received an interactive simulation-based intervention, and the third (n = 16) received no intervention. Participants supplied information on (1) their attitudes towards vaccination, and (2) their information needs and views on personal choice concerning vaccination, at three time points: immediately before and after the intervention, and after six months. Results Neither intervention had a significant effect on participants’ attitudes towards vaccination. However, the group receiving the presentation-based intervention saw a sustained uplift in confidence about information needs, which was not observed in the simulation-based intervention group. Discussion Our findings with young people are consistent with previous work on vaccination interventions aimed at adults, which have shown limited effectiveness, and which can actually reduce intention to vaccinate. Our findings on the most effective mode of delivery for the intervention should inform future discussion in the growing “games for health” domain, which proposes the use of interactive digital resources in healthcare education

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Thermal electron attachment to F2

    Get PDF
    Rate constants have been measured from 300 to 700 K for thermal electron attachment to F2 using two flowing afterglow–Langmuir probe apparatuses. Dissociative attachment yielding F− is observed with a rate constant of 5.0 ± 1.3 × 10−9 cm3 s−1 at 300 K, rising to 9.6 ± 2.4 × 10−9 cm3 s−1 at 700 K, well below the previously accepted values of McCorkle et al. [D. L.McCorkle, L. G. Christophorou, A. A. Christodoulides, and L. Pichiarella, J. Chem. Phys. 85, 1966 (1986)]. The absolute concentration of F2 reaching the afterglowis verified by measuring the near-collisional rate constant (4.5 ± 1.5 × 10−10 cm3 s−1) for Ar+ + F2→ArF+ + F. Prior attempts to apply R-matrix calculations to the F2 + e− system have failed to explain previously reported thermal and nonthermal attachment rate constants along with high-resolution, low-energy attachment cross sections. The present results are reproduced exceptionally well by R-matrix calculations employing previously calculated resonance widths without adjustment
    corecore