61 research outputs found

    Dynamics of earthquake nucleation process represented by the Burridge-Knopoff model

    Full text link
    Dynamics of earthquake nucleation process is studied on the basis of the one-dimensional Burridge-Knopoff (BK) model obeying the rate- and state-dependent friction (RSF) law. We investigate the properties of the model at each stage of the nucleation process, including the quasi-static initial phase, the unstable acceleration phase and the high-speed rupture phase or a mainshock. Two kinds of nucleation lengths L_sc and L_c are identified and investigated. The nucleation length L_sc and the initial phase exist only for a weak frictional instability regime, while the nucleation length L_c and the acceleration phase exist for both weak and strong instability regimes. Both L_sc and L_c are found to be determined by the model parameters, the frictional weakening parameter and the elastic stiffness parameter, hardly dependent on the size of an ensuing mainshock. The sliding velocity is extremely slow in the initial phase up to L_sc, of order the pulling speed of the plate, while it reaches a detectable level at a certain stage of the acceleration phase. The continuum limits of the results are discussed. The continuum limit of the BK model lies in the weak frictional instability regime so that a mature homogeneous fault under the RSF law always accompanies the quasi-static nucleation process. Duration times of each stage of the nucleation process are examined. The relation to the elastic continuum model and implications to real seismicity are discussed.Comment: Title changed. Changes mainly in abstract and in section 1. To appear in European Physical Journal

    Tribological behaviour of microalloyed and conventional C–Mn rail steels in a pure sliding condition

    Get PDF
    This paper compares the tribological behaviour of microalloyed rail steel with conventional C–Mn rail steel under different test conditions (load, temperature and humidity). Pin-on-disc tribological tests were performed inside a climate chamber under different loads (20, 30 and 40 N), relative humidity (15, 55 and 70%) and temperatures (20 and 40 ℃). After the friction and wear tests, the worn surfaces were analysed using both confocal and scanning electron microscopies. The results obtained show that the use of microalloyed steel in railway applications under severe conditions (high loads and humidity) could lead to increased service life of the rails and could extend the time between maintenance operations

    Antifriction and Antiwear Properties of an Ionic Liquid with Fluorine-Containing Anion Used as Lubricant Additive.

    Get PDF
    Tribological behavior of trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl) imide [P66614][NTf2] ionic liquid (IL) used as additive in a diester oil at concentrations of 0.25, 0.5 and 1 wt% was studied in this research. The IL solubility in the base oil was measured using the inductively coupled plasma mass spectrometry (ICP-MS) technique, and corrosion analysis was done at room temperature at relative humidity of 49–77%. Tribological tests were conducted for 30 min at room temperature, 15 Hz frequency, 4 mm of stroke length, a load of 80 N (corresponding to 2 GPa of maximum contact pressure) and relative humidity of 35–53%. Friction coefficient was recorded during tests, and the wear scar was measured by confocal microscopy. Worn surface was also analyzed by SEM, EDS and XPS. Results showed that a saturated solution of [P66614][NTf2] in the base oil contains about 30 wt% of IL and corrosion activity for the highest concentration of IL (1 wt%) was not found after a 20-day test. Although the base oil and the mixtures had similar friction behavior, only the 1 wt% sample exhibited slightly lower wear volume than the base oil. SEM images exhibited similar wear track width (707–796 µm) and wear mechanism (adhesive) for all samples tested. In addition, the EDS spectra only showed the elements present in the steel. Finally, the XPS measurements could not detect differences regarding iron chemical state among the samples, which is consistent with the tribological behavior obtained

    Thermal weakening friction during seismic slip experiments and models with heat sources and sinks

    Get PDF
    Experiments that systematically explore rock friction under crustal earthquake conditions reveal that faults undergo abrupt dynamic weakening. Processes related to heating and weakening of fault surfaces have been invoked to explain pronounced velocity weakening. Both contact asperity temperature Ta and background temperature T of the slip zone evolve significantly during high-velocity slip due to heat sources (frictional work), heat sinks (e.g., latent heat of decomposition processes), and diffusion. Using carefully calibrated High-Velocity Rotary Friction experiments, we test the compatibility of thermal weakening models: (1) a model of friction based only on T in an extremely simplified, Arrhenius-like thermal dependence; (2) a flash heating model which accounts for the evolution of both V and T; (3) same but including heat sinks in the thermal balance; and (4) same but including the thermal dependence of diffusivity and heat capacity. All models reflect the experimental results but model (1) results in unrealistically low temperatures and model (2) reproduces the restrengthening phase only by modifying the parameters for each experimental condition. The presence of dissipative heat sinks in stage (3) significantly affects T and reflects on the friction, allowing a better joint fit of the initial weakening and final strength recovery across a range of experiments. Temperature is significantly altered by thermal dependence of (4). However, similar results can be obtained by (3) and (4) by adjusting the energy sinks. To compute temperature in this type of problem, we compare the efficiency of three different numerical approximations (finite difference, wavenumber summation, and discrete integral)

    Tribological performance of tributylmethylammonium bis(trifluoromethylsulfonyl)amide as neat lubricant and as an additive in a polar oil

    Get PDF
    The ionic liquid (IL) tributylmethylammonium bis(trifluoromethylsulfonyl)amide ([N4441][NTf2]) was used as neat lubricant and as an additive (1.5 wt%) in a polar oil to study its friction and wear reducing properties. Tribological tests were completed for 90 minutes at room temperature and 100 °C in a reciprocating configuration at loads of 30 and 70 N, 10 Hz-frequency, and 4 mm stroke length. Wear volume was measured by confocal microscopy and the surface-IL interaction determined by XPS. The main findings were that neat IL showed the best tribological behavior; the IL-containing mixture behaved similar to the base oil regarding friction, however outperformed the antiwear behavior of the base oil under higher temperature; surface-IL chemical interaction was found mainly at 100 °C

    Submarine record of volcanic island construction and collapse in the Lesser Antilles arc: First scientific drilling of submarine volcanic island landslides by IODP Expedition 340

    Get PDF
    IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor-sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of pre-existing low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or micro-faulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor-sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits comprised of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution dataset to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation processes. This article is protected by copyright. All rights reserved

    Elastic reciprocity and symmetry constraints on the stress field due to a surface-parallel distribution of dislocations

    No full text
    Abstract Elastic reciprocity and geometric symmetry are used to constrain the expressions for stresses due to introduction of line dislocations near a half-space surface. Specifically, a relationship is shown to exist between the changes induced by dislocations of orthogonal Burgers vectors (normal and parallel to the free surface). These results are used to address inconsistencies of solutions in the literature
    corecore