
For Peer Review
 

 

 

 

 

 

Tribological behaviour of microalloyed rail steels and 

conventional C-Mn in pure sliding condition 
 

 

Journal: Part F: Journal of Rail and Rapid Transit 

Manuscript ID JRRT-17-0128.R1 

Manuscript Type: Article 

Date Submitted by the Author: 29-Dec-2017 

Complete List of Authors: Viesca, J; University of Oviedo,  
González-Cachón, Sergio; Universidad de Oviedo, Department of 
Construction and Manufacturing Engineering 
García, Alberto ; Universidad de Oviedo, Department of Construction and 
Manufacturing Engineering 
González, Rubén; Universidad de Oviedo, Department of Marine Science 
and Technology 
Hernandez Battez, Antolin; University of Oviedo 

Keywords: 
wear, pin-on-disc, microalloyed steel, rail steels, fine pearlitic 
microstructure 

Abstract: 

This paper compares the tribological behaviour of microalloyed rail steel 
with conventional C-Mn rail steel under different test conditions (load, 
temperature and humidity). Pin-on-disc tribological tests were performed 
inside a climate chamber under different loads (20, 30 and 40 N), relative 
humidity (15, 55 and 70% RH) and temperatures (20 ºC and 40 ºC). After 
friction and wear tests, worn surfaces were analysed using both confocal 
and scanning electron microscopy. The results obtained show that the use 
of microalloyed steel in railway applications under severe conditions (high 
loads and humidity) could lead to an increased service life for the rail and 
extend the time between maintenance operations. 

  

 

 

http://mc.manuscriptcentral.com/JRRT

Journal of Rail and Rapid Transit



For Peer Review

1 

 

Tribological behaviour of microalloyed rail steels and conventional C-Mn in pure sliding condition 
 

 
J. L. Viescaa,b,*, S. González-Cachóna, A. Garcíaa,  

R. Gonzálezb,c, A. Hernández Batteza,b 

 
 

aDepartment of Construction and Manufacturing Engineering, University of Oviedo, Asturias, Spain 
bFaculty of Science and Technology, Bournemouth University, UK 

cDepartment of Marine Science and Technology, University of Oviedo, Asturias, Spain 
(*)Email: viescajose@uniovi.es / Orcid ID: 0000-0002-9838-8634 

 

 

Abstract 
 
This paper compares the tribological behaviour of microalloyed rail steel with conventional C-Mn rail 

steel under different test conditions (load, temperature and humidity). Pin-on-disc tribological tests were 

performed inside a climate chamber under different loads (20, 30 and 40 N), relative humidity (15, 55 and 

70% RH) and temperatures (20 ºC and 40 ºC). After friction and wear tests, worn surfaces were analysed 

using both confocal and scanning electron microscopy. The results obtained show that the use of 

microalloyed steel in railway applications under severe conditions (high loads and humidity) could lead to 

an increased service life for the rail and extend the time between maintenance operations. 

 

Keywords: wear; pin-on-disc; microalloyed steel; rail steels; fine pearlitic microstructure 
 

1. Introduction 

 

High-capacity railway lines have grown in number very rapidly in recent years and even more 

pronounced growth is anticipated in the future. High-speed lines are currently present in more than fifteen 

countries around the world; although the network is expanding rapidly and is expected to reach 25,000 

kilometres of new lines by 2025 (included Saudi Arabia where the first high-speed line that will cross a 

desert is being built).  The development of rails that can be used for new railway infrastructures in 

extreme environments (high temperature and humidity) should be a priority for the railway industry.  

Current rail steels satisfy the needs of the normal loads in service today. However, increasing heavy-haul 

traffic causes very high levels of wear and deformation on the rail head, which can cause breakage and a 

significant reduction in the working life of the rail, requiring more frequent replacement.  
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The railway companies spend billions of dollars a year in maintenance (grinding) and replacement of 

rails, which has led to the development of new rails with improved mechanical properties (hardness, yield 

strength and tensile strength) [1], such as the microalloyed steel rails.  

The optimum microstructural choice for rail steels is a very fine pearlitic microstructure (reduced 

interlaminar distance), which improves mechanical properties [2]. For this reason, production of new 

microalloyed steels has become very popular. This pearlitic microstructure is achieved by adding alloying 

elements such as niobium, chromium and vanadium. However, the rails produced from these steels have a 

risk of containing fragile structures such as bainitic and martensitic phases. Little research on 

microalloyed rail steel has been published to date. Ordoñez et al. [3] studied microstructural factors of 

premium rail steels that have a direct relation to rail performance. In this case, the appearance of pro-

eutectoid cementite at the prior austenite grain boundaries contributed to the development of rolling 

contact fatigue (RCF) and secondary cracks in the railhead. However, the performance of premium rail 

steels with respect to impact toughness and wear was better than for conventional steels. 

In addition, Panda et al. [4] analysed the nature of oxides generated in Cu and Mo microalloyed rail steels 

after a service period of two years compared to traditional C-Mn rail steels. The results showed a lower 

corrosion rate in the case of the Cu–Mo rail steels. Panda et al. [5] demonstrated that microalloyed rail 

steels have a greater resistance to corrosion than the C-Mn rail steel commonly used. Likewise, Moon et 

al. [6] evaluated mechanical properties and the influence of hydrogen on microalloyed steels in 

comparison with conventional steels. The study revealed that the degree of hydrogen embrittlement was 

higher in C-Mn steel compared to the microalloyed steels. On the other hand, it can be expected that 

microalloyed steels will have better wear behaviour than C-Mn steels because of their greater hardness. 

But, Ramalho and Aniołek [7-8] showed that wear in rails does not depend solely on their hardness. 

It should be noted that acceptance tests and qualifications included in international standards (EN 13674-

1:2011 [9] and AREMA [10]) for steel rails do not require wear tests. Different non-standard tests have 

been employed in order to study the tribological behaviour of the wheel-rail contact. In addition, research 

works conducted by Jungwon and Garnham [11-12] indicated that twin-disc configuration is the most 

suitable configuration to study RCF (rolling contact fatigue) damage on rail surfaces. While other 

alternative studies [13-14] have shown that the pin-on-disc configuration is also an option for studying 

wear behaviour in wheel-rail contacts. Windarta and Baharom [15] studied the wear rate of the rail and 
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wheel materials in dry sliding contact using the pin-on-disc configuration and the results were in 

agreement with results obtained from twin disc configuration. 

Wang [16] studied wear and frictional behaviour of rails under high axle loads. The experimental results 

showed that the decisive factor for the replacement of the rail on the curved sections for heavy traffic 

lines was the side rail wear. Zhong [17] shows that wear is the main damage in rails used for high loads, 

while RCF is the main damage in rails used for high-speed lines. Windarta et al. [18] analysed the 

influence of applied load on wear of rail materials using a pin-on-disc machine. The experimental results 

showed that wear rate increases proportionally with the increasing of applied load and the main wear 

mechanism is plastic deformation caused by abrasive wear. Rail wear is related primarily to the nature of 

the wheel-rail pair (materials, hardness, microstructure, surface finish, etc.) and secondly, with the 

geometry and contact conditions (pressure, speed, presence of third body, etc.). The researcher Bokowski 

[19] showed that the wear of the rail does not only depend on its hardness, and also that bainitic steel rails 

do not have better wear performance than pearlitic steel rails, despite having higher hardness. 

Meehan et al. [20] shows that the growth rate of corrugation on the rail has a strong correlation with the 

variation in environment conditions. In addition, Ishida [21] studied the appearance of corrugation in the 

surface of the rail and the surface layer of oxide generated in a submarine tunnel, which is influenced by 

the ambient air of the tunnel, which contains sea salt and high humidity. The results showed that the β-

Fe2O3. H2O oxide type that was found on the surface of the rail is causing a reduction in the friction 

coefficient. 

Lewis and Olofsson [22] examined the effects of atmospheric variations and the oxide generated in the 

performance of friction modifiers (FM) using pin-on-disc testing in a climatic chamber. Oxidative wear 

(wear particles of Fe2O3) was found in the interface between the pin (extracted from the wheel) and the 

disc (extracted from the rail). 

Yi Zhu [23] studied the influence of environmental conditions (temperature and humidity) and iron 

oxides on the friction coefficient of the wheel-rail contact. The results showed that iron oxides generated 

on the rail surfaces (Hematite (α-Fe2O3)) can increase the coefficient of friction because it is hard and less 

protective. On the other hand, the effects of boundary lubrication by the water molecule film can reduce 

the friction coefficient. When neither of the two effects is dominant, the friction coefficient is stabilized. 

Recently, Lyu [24] studied the influence of environmental conditions and iron oxides on the wear 

performance of the wheel-rail contact. The results demonstrated that a low value of relative humidity     
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(40 % RH) causes adhesive wear, which is increasingly severe with decreasing temperature. However, it 

was seen that at room temperature and high relative humidity (85 % RH) the main wear mechanism is 

oxidative wear. This research work focused only on conventional steel rails.  

The objective of this paper is to study the tribological behaviour of microalloyed steel rail in comparison 

with a C-Mn steel rail and the influence of high loads and increased humidity and temperature on friction 

coefficient and wear.  

2. Experimental procedure 

2.1 Materials  

Steel specimens used for the wear tests were obtained from the profiles of the 54E1 and 115RE rails (Fig. 

1). These rails have been designed according to the European Standard EN 13674-1:2011 and American 

Standard AREMA, respectively [9, 10]. Discs and pins for use in wear tests were manufactured from 

microalloyed steel rail (profile 115RE) and R260 grade C-Mn steel rail (profile 54E1). 

Chemical composition and hardness of both steels used were measured and the results were similar to the 

values established by the previously mentioned international standards. For chemical analysis, samples of 

the head of the rails were removed in the position indicated by the standard EN 13674-1:2011 and 

measured using an atomic emission spectrometer by sparking SPECTRO (spectroLAB). The percentage 

of niobium was measured from steel particles in a plasma mass spectrometer ICP, VARIAN (VISTA-

PRO). Pins from both steel rails were used to measure carbon and nitrogen content in specific analysers 

LECO CS225 and TCH600. Nominal chemical composition of the studied steels is shown in Table 1. 

 

Table 1. Measured chemical composition of tested steels. 

  Element (wt %) 

Sample Rail profile C Mn Si P S N Cu Ni Cr Mo Nb V 

R260 54E1 0.70 1.10 0.26 0.014 0.014 0.005 0.017 0.025 - - - - 

Microalloyed 115RE 0.79 1.14 0.43 0.017 0.013 - - 0.022 0.25 0.003 0.014 0.060 

 

The R260 grade steel is alloyed with manganese, copper and nickel, whereas microalloyed steel includes 

manganese, molybdenum, chromium, niobium and vanadium. The two steels have different contents of 

carbon and silicon, but the contents of sulphur, phosphorus and manganese are similar.  
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The microalloyed steel is much more hardenable than steel R260 because it has a higher percentage 

of alloy elements (higher content in C and Si). TTT curves of the microalloyed steel are those 

furthest away from the origin than those of R260 steel because of the microalloys elements 

dissolved in the austenite delays the formation of bainite and pearlite. It would still be concluded 

that the hardenability of the steel increases with the addition of the alloy elements, such as silicon 

and manganese.  

The ideal critical diameter (ID) is the hardenability indicator of steel, where the silicon has its 

importance in its value. 

��	���� = ����� ∗ 
�	���� ∗ 
�	�
�� ∗ 
�	���� ∗ 
�	���� ∗ 
�	���� ∗ 
�	���� (1) 


�	�
�� = � + �. � ∗ %	
� (2) 

A higher percentage of microalloys, such as silicon, provide a high-grade alloy steel rail, therefore 

the residual stress increase in head of the rail [25]. 

The Brinell hardness measurements were taken on a sample of the head of each rail and were performed 

according to EN ISO 6506-1 using a Hoytom 1003A durometer. Table 2 shows the hardness measured, 

and the rolling surface hardness obtained from the quality certificates supplied by the manufacturer. 

 

Table 2. Measured hardness of tested steels. 

 

 

 

 

Tensile Test measurements were taken on a cylindrical sample of the head of each rail and were 

performed per UNE-EN 10002-1 using a Universal electromechanical testing machine (Instron) with a 

load capacity of 100 kN, Table 3. 

 

Table 3. Mechanical properties of tested steels.  

  

Sample 
Rail 
profile 

Ơya MPa Rb  MPa A5
c  % 

R260 54E1 528 951 13 

Microalloyed 115RE 677 1150 10 
a Ơy = Yield Strength    b R = Breaking Strength    c A5 = Elongation 

 

Sample Rail profile RS Hardness (HB)a Hardness (HB)b 

R260 54E1 287 249 

Microalloyed 115RE 334 292 

a RS= Rolling surface      b Hardness of a sample of the head of the rails 
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For microstructural characterization, material samples were also extracted from the railhead. These 

samples were polished and etched with 2% Nital in order to study the inclusions by using confocal 

microscopy (Leica TCS SP2-AOBS) and electron scanning microscopy (JEOL 5600). 

Inclusions were determined in accordance with standard DIN 50602 [26]. The polished surfaces of 

the samples were observed in an optical microscope at 100 magnifications. Template Nº1 includes 

four columns with the most common forms of observed inclusions, designated by the number 1, 3, 

6, and 8. In turn, each column is formed by templates numbered templates from 0 to 8. The K 

method of this standard was followed to obtain the level of purity (content of non-metallic 

inclusions), where the percentage of non-metallic inclusion is determined. 

2.2 Wear tests 

The wear tests were performed on a fully computerized UMT-3 tribometer using a pin-on-disc 

configuration, the tribological pairs tested were formed by pins of R260 and microalloyed steels 

(representing the rail) and discs of R260 steel (representing the wheel). Selection of the R260 steel grade 

as wheel material is due to its mechanical properties similar to the conventional material used in wheel 

manufacture [13]. The experiments were conducted using a testing machine designed according to ASTM 

G99 standards [27].  

The wear tests were performed on a tribometer CETR UMT-3 completely computerized with a pin-

on-disc configuration. This test method consists in a pin that slides against a rotating disc. The load 

is applied vertically downwards to a motor-driven adjustable weep carriage, which uses a 

force/load sensor and a spring to maintain a constant load. During the wear test, the normal forces 

are applied. Both pin and disc sample are polished using 120, 220 and 500 grit abrasive paper.  

The parameters that we can vary to carry out such tests with this tribometer are: load, 

temperature, velocity, relative humidity and sliding distance (time, cycles). During the tests the 

friction coefficient are measured in real time. Each test was repeated three times and the results 

were averaged. 

The friction coefficient is measured continuously using a transducer located in the tribometer and 

sends signals to the computer, which are interpreted by the corresponding software provided by the 

manufacturer. The wear of pins specimens are determined as the average weight losses, which were 

measured before and after each test, using a scale with 0.5 mg resolution. The pins before any 
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weighed are cleaned with heptane in an ultrasonic bath for 10 minutes, then dried with hot air to 

remove any residual solvent. 

Tribological tests for different atmospheric conditions (humidity and temperature) were carried 

out in a climatic chamber with the control of temperature and humidity. SEM JEOL 5600 with 

EDX scanning electron microscope was used to examine and evaluate the wear mechanism on pins 

after the wear tests.  

Discs of 69.85 mm diameter and 6.60 mm thickness were taken from the foot of the 54E1 rail profile 

(R260 grade). The pins of 6.3 mm diameter and 18.8 mm length were taken from the head of the rail 

115RE (microalloyed) and 54E1 (R260 grade) profiles. Both specimens were finished to a surface 

roughness Rq = 0.5µm. 

In order to study the influence of high loads on the wear behaviour of microalloyed and C-Mn rail steels, 

pin-on-discs tests were conducted at room conditions (20 ºC 55 % RH), under three normal loads 20, 30 

and 40 N, 200 rpm (corresponding to 0.52 m/s) and 60-min duration (sliding distance = 1.88 km). Each 

test was replicated at least three times. These test conditions in agreement with previous research work in 

the study of the wear behaviour of steel rails [13, 14, 15, 18, 28, and 29]. 

Additional tests for the study of the influence of atmospheric variables on the tribological behaviour of 

the rail steel were performed in a climatic chamber to control temperature and relative air humidity. Pin-

on-disc testing was carried out under a normal load of 20 N, at 200 rpm (0.35 m/s), with 60-min duration 

(sliding distance = 1.28 km) and for different levels of relative humidity (15 and 70 % RH) and 

temperature (20 ºC and 40 ºC). Each test was also replicated at least three times. The higher relative 

humidity value studied (70 %) corresponds to the typical conditions in underground tunnels [22], where 

high wear rate has been found mainly due to high relative humidity. On the other hand, temperatures of 

40 ºC with 15 % RH are conditions typical of an arid climate [30].  

Before and after wear tests, the specimens were cleaned with heptane in an ultrasonic bath for five 

minutes and dried with hot air. Wear (mass and volume) of the pins was measured by a precision balance 

(with a precision up to 0.5 mg). Wear surfaces of the pins were also analysed with optical 

microscopy (Nikon EPIPHOT 200) and scanning electron microscopy (MEB JEOL-6610LV) in order to 

evaluate the wear mechanism.  
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3. Results and discussion  

3.1 Microstructural analysis 

Fig. 2 shows non-metallic inclusions of MnS dispersed in the pearlitic matrix of both steel samples. The 

inclusions percentage was similar in both cases according to the method described above; however 

their morphology and distribution were different depending on whether samples were extracted in 

longitudinal or transversal direction. The inclusions in transversal direction, Fig. 2a, are smaller in size 

and have a globular morphology; while in longitudinal direction they are narrower and longer, Fig. 2b 

and 2c. 

Fig. 2c shows an alignment of inclusions in the microalloyed steels, in addition to the staggered 

orientation of the inclusions in the rolling direction. The alignment of inclusions is related with the 

rolling direction, and this effect is more relevant in microalloyed steel due to the higher degree of 

deformation during the rolling process. Microalloyed steel samples were extracted from 115 RE rail 

profiles, while R260 steel samples were obtained from 54E1 rail profile.  

Therefore, non-metallic inclusions are more deformed, more crushed (thinner and longer particles) 

and preferably oriented in the rolling direction in microalloyed steel. Fig. 3 shows the differences 

between the two rail profiles used.  

This can influence fatigue crack growth in the longitudinal direction [31]. In summary, the profile rolling 

process of microalloyed steel rail will affect the distribution and the morphology of the metal inclusions, 

which occur mainly in the rolling direction, increasing the rate of fatigue crack growth in the longitudinal 

plane of microalloyed steel rail and significantly reducing its fatigue behaviour [32].  

Fig. 4 shows that both steels have a fully pearlitic microstructure without presence of ferrite in the grain 

boundary and no fragile microstructures such as bainite, martensite or cementite. Both steels studied have 

the desired microstructure (pearlite), which improves the mechanical properties for use in severe track 

conditions. For both steels a morphological analysis was performed, measuring the interlaminar spacing 

using the intersection procedure described by Underwood [33]. The interlaminar spacing of the 

microalloyed steel (Fig. 5a) is less than that of the R260 steel (Fig. 5b). Microalloyed steel perlite is 

thinner than that of the C-Mn steel and that is why the former has improved mechanical properties (higher 

tensile strength, yield strength and hardness), Tables 2-3.  
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The reason why this occurs is that the lower the thickness of the ferrite layer, the higher is 

the probability of the dislocations being immobilized and piling on top of each other if an obstacle is 

encountered during movement, which means that it is necessary to apply a lot stress to get them moving 

again. As a result, mechanical resistance properties increase. 

Furthermore, the microalloyed steel rail has a higher hardness than the C-Mn steel rail (Table 2) due to its 

higher content of carbon and alloying elements (especially manganese and vanadium), which provide a 

superior hardening effect. The presence of vanadium and niobium act as carburigen elements which delay 

austenitic transformation and allow precipitation hardening, thus obtaining a fine perlite (Fig. 5) with 

improved mechanical properties. The hardness, the yield strength and the breaking strength increase with 

a decrease in the interlaminar spacing, while elongation increases in value with an increase in the 

interlaminar spacing. 

3.2 Tribological tests for high loads 

Fig. 6 shows mean values and deviation of pin wear (mass loss) after tribological tests. It can be seen that 

R260 steel pins exhibited higher wear than the microalloyed steel pins for the three applied loads (20, 30 

and 40 N). Both steels show the same increasing trend of wear with the increase in applied load.  

Fig. 7 and Fig. 8 show the wear surfaces of the steel pins after tribological tests. The appearance of 

adhesion joints was observed on the wear surfaces of both tested steels. The adhesion joints are marked 

with a red circle, which had already been observed in the research carried out by Viáfara [29]. The 

increase in load leads to an increase in the severity of wear (more plastic deformation and formation of 

cracks on the surface). Adhesive wear was the wear mechanism observed in both cases, being more 

severe in the R260 steel. The results obtained demonstrate that the microalloyed steel has higher wear 

resistance than the R260 steel. Fig. 9 and Fig. 10 show the worn surfaces of the pins of the R260 and 

microalloyed steels at 20 N captured with optical microscope.  

The Archard wear model [34] describes the loss of material. According to this model the volume of wear 

(m3) is proportional to the wear coefficient k, the normal force N (N) and the sliding distance S (m), and 

inversely proportional to the hardness H (N/m2) of the softer material in the contact. 

� = �� ∗ � ∗ 
�/� (3) 
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Fig. 11 shows the change in adhesive wear coefficient (k) on increasing the applied load for each of the 

studied steels. A high value of wear coefficient (k) indicates lower wear resistance; so the microalloyed 

steel exhibits greater wear resistance than the R260 steel. A conclusion can be derived from this graph: 

the wear coefficient (k) for the microalloyed steel remains stable at increasing applied load. 

On the other hand, the wear coefficient of the R260 steel decreases with the increase in applied load, the 

change in K wear coefficient probably indicates changes in the wear mechanisms, as it has been 

reported by Lewis et al. [35]. In R260 samples, pin and disc are made from the same material, and 

as a result, the adhesion wear mechanism is more suitable. Fig. 12 and Fig. 13 show these changes 

in the main wear mechanism for steel R260. 

Fig. 14 and Fig. 15 show the friction coefficient variation with time and the applied load. Although the 

wear behaviour of the two steels was quite different under the testing conditions employed, no significant 

differences were observed in friction coefficient. The slight differences between low and high load 

COF evolution cannot be considered due to the natural variability of the test.   

The evolution of friction coefficient with time was similar for both steels studied; the same conclusion 

was reached in the study conducted by Viáfara [29]. 

For both steels used in this study, the friction coefficient increases rapidly to values between 0.5-0.7 and 

at the end of tests the average coefficient of friction reached a value of 0.6. This result was also observed 

by Dayot [36]. The average friction coefficient of 0.6 obtained during these tests was slightly higher than 

the 0.45 value obtained in a previous study under similar conditions [37]. 

3.3 Tribological tests under different atmospheric conditions (temperature and humidity) 

The mass loss of R260 and microalloyed steel pins for the two relative humidities studied (15% RH and 

70% RH) and at room temperature is shown in Fig. 16a. The results show that the two steels tested with 

high relative humidity have greater mass loss than the samples tested at lower relative humidity. The two 

studied steels are equally sensitive to the increase in the humidity.  

The mass loss of R260 and microalloyed steel pins for the two temperatures studied (40 ºC and 20 ºC) 

and for 15 % RH is shown in Fig. 16b. The results show that the two steels tested at a temperature of 40 

ºC have the same mass loss as at 20ºC, and respond in the same way to the increase in the temperature.  

In order to explore the different wear mechanisms for diverse environments, the surface topography 

marks of wear on the pins has been studied with the Scanning Electron Microscope (SEM). Fig. 17 and 
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Fig. 18 show SEM images of the wear surface from the microalloyed pins after tribological tests at 70 % 

RH and room temperature (20 ºC). 

 As can be seen in Fig. 17, the growing stresses lead to the formation of microcracks (the starting point of 

the damage), which with time propagate to the surface, and unite with other cracks, until small quantities 

of the material are detached, causing the pitting or spalling of the surface. Fig. 17 clearly shows adhesive 

wear caused by plastic deformation. 

We can see in this figure that the crop marks associated with the propagation of cracks parallel to the 

direction of sliding. Fig. 18 shows a photograph of the remains of the disc test piece adhered to the pin 

material with the formation of adhesion joints (characteristics of adhesive wear).  

Fig. 19 and Fig. 20 show the variation in the coefficient of friction with time and humidity applied to the 

R260 and microalloyed steels. It can be seen that that the evolution of friction coefficient with time 

increases for the lower humidity studied. The variation in relative humidity had an influence on wear 

resistance and has also had a marked effect on the friction coefficient, which is greater for the lower 

relative humidity studied (15 % RH) caused by water condensation. Water condensation could have a 

significant effect on boundary lubrication on the contact surfaces, which happens when the friction 

surfaces are separated by a thin film of water condensation. This film of water which is formed at high 

levels of humidity (70% RH) may maintain the oxides on the surface, and reduce the friction coefficient 

[23]. 

Fig. 21 shows the micro-analysis of the wear surface obtained from energy dispersive spectroscopy 

(EDS) where only the elements present in steel were found. In addition, all the samples studied show 

oxidation, which is indicated by the presence of a small percentage of oxygen in each of the 

samples studied (1-3 % O). The research performed by Suzumura [38] who analysed the oxides generated 

on the surface of the rail by x-ray diffraction, also showed that the amount of rust produced was very 

small.  

Table 4. Semi quantitative elemental analysis from points marked on Fig. 16. 

Point C (%) O (%) Fe (%) Total (%) 

1 15.26 2.69 82.05 100 

2 13.43 1.89 84.68 100 

3 10.67 1.01 88.31 100 
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4. Conclusions 

 

From the results obtained in this study some conclusions can be drawn: 

• Microalloyed steels have greater wear resistance than C-Mn steels, based on their mechanical 

properties (such as hardness, yield strength and tensile strength). This is associated with smaller 

interlaminar spacing, because of the concentration of carbon, manganese and chromium in the 

microalloyed steel, which allows a fine pearlitic microstructure.  

• The R260 steel pins exhibited greater wear than the microalloyed steel pins for the three loads applied 

(20, 30 and 40 N), and both steels show the same trend to increased wear with the increase in the 

applied load. 

• The wear coefficient (k) for the microalloyed steel rail is not sensitive to the increase in applied load. 

In addition, the wear coefficient of the R260 steel rail decreases with the increase in applied load.  

• The microalloyed and R260 steels tested at high relative humidity have greater mass loss than those 

tested at lower relative humidity and the two steels are equally sensitive to the increase in humidity. 

However, an increase in temperature has no influence on the wear of microalloyed and R260 steels 

rail within the 20-40 ºC range.  

• The friction coefficient is greater at the lower relative humidity (15 % RH) than for the highest 

relative humidity (70 % RH) due to water condensation. 

• The use of microalloyed steel rather than C-Mn steel in severe track conditions results in longer 

service life and increases the time between maintenance operations.  
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Fig. 1. Extraction zone of the specimens for the wear tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 17 of 34

http://mc.manuscriptcentral.com/JRRT

Journal of Rail and Rapid Transit

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Inclusions in the rails: (a) R260 steel in the transversal direction, (b) R260 steel 
in the longitudinal direction, (c) microalloyed steel in the longitudinal direction and (d) 
cutting directions. 
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Fig. 3. Profile design according to the standards: EN 13674-1:2012 (54E1) and 
AREMA (115RE). 
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Fig. 4. Pearlitic microstructure: (a) R260 steel (b) microalloyed  steel. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Morphological analysis. (a) Microstructure R260 steel (9500X) and (b) 
microstructure microalloyed steel (9500X). 
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Fig.6. Wear (mass loss) with respect to the applied load. 
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Fig. 7. SEM images of wear surface of the R260 steel pin. (a) 20 N, 80X, (b) 20 N, 
150X, (c) 40 N, 80X and (d) 40 N, 150X. 
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Fig. 8. SEM images of wear surface of the microalloyed steel pin: (a) 20 N, 80X, (b) 20 
N, 150X, (c) 40 N, 80X and (d) 40 N, 150X. 
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Fig. 9. R260-20 N steel pin worn surface, 200X. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 10. Microalloyed-20 N steel pin worn surface, 200X. 
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Fig. 11. Wear coefficient (k). 
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Fig. 12. Adhesive wear mechanism R260-40N steel pin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13. Abrasive wear mechanism R260-20N steel pin.  
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Fig. 14. Variation of friction coefficient with time for the R260 steel. 
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Fig. 15. Variation of friction coefficient with time for the microalloyed steel. 
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Fig. 16. Comparison of mass loss according to the type of steel studied. 
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Fig. 17. Wear surface from the microalloyed pins (70 % and 20 ºC). 
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Fig. 18. Adhesion joints and material transferred from the disc. 
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Fig. 19. Variation in friction coefficient with time for the microalloyed steel (20ºC). 
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Fig. 20. Variation in friction coefficient with time for the R260 steel (20ºC). 
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Fig. 16 SEM image and EDS analysis from the wear surface after tests made at 70 % RH and 40 ºC. 

 

 

 

 

 

 

 

 

 

Fig. 21 SEM image and EDS analysis from the wear surface after tests made at 70 % 
RH and 40 ºC. 
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