187 research outputs found

    A spatial approach for the epidemiology of antibiotic use and resistance in community-based studies: the emergence of urban clusters of Escherichia coli quinolone resistance in Sao Paulo, Brasil

    Get PDF
    Copyright © Kiffer et al; licensee BioMed Central Ltd. 2011 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background Population antimicrobial use may influence resistance emergence. Resistance is an ecological phenomenon due to potential transmissibility. We investigated spatial and temporal patterns of ciprofloxacin (CIP) population consumption related to E. coli resistance emergence and dissemination in a major Brazilian city. A total of 4,372 urinary tract infection E. coli cases, with 723 CIP resistant, were identified in 2002 from two outpatient centres. Cases were address geocoded in a digital map. Raw CIP consumption data was transformed into usage density in DDDs by CIP selling points influence zones determination. A stochastic model coupled with a Geographical Information System was applied for relating resistance and usage density and for detecting city areas of high/low resistance risk. Results E. coli CIP resistant cluster emergence was detected and significantly related to usage density at a level of 5 to 9 CIP DDDs. There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. Conclusions There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. The usage density of 5-9 CIP DDDs per 1,000 inhabitants within the same influence zone was the resistance triggering level. This level led to E. coli resistance clustering, proving that individual resistance emergence and dissemination was affected by antimicrobial population consumption

    Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is an incurable X-linked muscle-wasting disease caused by mutations in the dystrophin gene. Gene therapy using highly functional microdystrophin genes and recombinant adeno-associated virus (rAAV) vectors is an attractive strategy to treat DMD. Here we show that locoregional and systemic delivery of a rAAV2/8 vector expressing a canine microdystrophin (cMD1) is effective in restoring dystrophin expression and stabilizing clinical symptoms in studies performed on a total of 12 treated golden retriever muscular dystrophy (GRMD) dogs. Locoregional delivery induces high levels of microdystrophin expression in limb musculature and significant amelioration of histological and functional parameters. Systemic intravenous administration without immunosuppression results in significant and sustained levels of microdystrophin in skeletal muscles and reduces dystrophic symptoms for over 2 years. No toxicity or adverse immune consequences of vector administration are observed. These studies indicate safety and efficacy of systemic rAAV-cMD1 delivery in a large animal model of DMD, and pave the way towards clinical trials of rAAV-microdystrophin gene therapy in DMD patients

    Positive Selection Results in Frequent Reversible Amino Acid Replacements in the G Protein Gene of Human Respiratory Syncytial Virus

    Get PDF
    Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a “flip-flop” phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites

    Short-Term Treatment with Bisphenol-A Leads to Metabolic Abnormalities in Adult Male Mice

    Get PDF
    Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDC) used as the base compound in the manufacture of polycarbonate plastics. Although evidence points to consider exposure to BPA as a risk factor for insulin resistance, its actions on whole body metabolism and on insulin-sensitive tissues are still unclear. The aim of the present work was to study the effects of low doses of BPA in insulin-sensitive peripheral tissues and whole body metabolism in adult mice. Adult mice were treated with subcutaneous injection of 100 µg/kg BPA or vehicle for 8 days. Whole body energy homeostasis was assessed with in vivo indirect calorimetry. Insulin signaling assays were conducted by western blot analysis. Mice treated with BPA were insulin resistant and had increased glucose-stimulated insulin release. BPA-treated mice had decreased food intake, lower body temperature and locomotor activity compared to control. In skeletal muscle, insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit was impaired in BPA-treated mice. This impairment was associated with a reduced insulin-stimulated Akt phosphorylation in the Thr308 residue. Both skeletal muscle and liver displayed an upregulation of IRS-1 protein by BPA. The mitogen-activated protein kinase (MAPK) signaling pathway was also impaired in the skeletal muscle from BPA-treated mice. In the liver, BPA effects were of lesser intensity with decreased insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit

    Falls in the general elderly population: a 3- and 6- year prospective study of risk factors using data from the longitudinal population study 'Good ageing in Skane'.

    Get PDF
    Accidental falls in the elderly are a major health problem, despite extensive research on risk factors and prevention. Only a limited number of multifactorial, long-term prospective studies have been performed on risk factors for falls in the general elderly population. The aim of this study was to identify risk factors predicting falls in a general elderly population after three and six years, using a prospective design

    Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers

    Get PDF
    Microsatellites and gene-derived markers are still underrepresented in the core molecular linkage map of common bean compared to other types of markers. In order to increase the density of the core map, a set of new markers were developed and mapped onto the RIL population derived from the ‘BAT93’ × ‘Jalo EEP558’ cross. The EST-SSR markers were first characterized using a set of 24 bean inbred lines. On average, the polymorphism information content was 0.40 and the mean number of alleles per locus was 2.7. In addition, AFLP and RGA markers based on the NBS-profiling method were developed and a subset of the mapped RGA was sequenced. With the integration of 282 new markers into the common bean core map, we were able to place markers with putative known function in some existing gaps including regions with QTL for resistance to anthracnose and rust. The distribution of the markers over 11 linkage groups is discussed and a newer version of the common bean core linkage map is proposed

    Reactive Oxygen Species Hydrogen Peroxide Mediates Kaposi's Sarcoma-Associated Herpesvirus Reactivation from Latency

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the host following an acute infection. Reactivation from latency contributes to the development of KSHV-induced malignancies, which include Kaposi's sarcoma (KS), the most common cancer in untreated AIDS patients, primary effusion lymphoma and multicentric Castleman's disease. However, the physiological cues that trigger KSHV reactivation remain unclear. Here, we show that the reactive oxygen species (ROS) hydrogen peroxide (H2O2) induces KSHV reactivation from latency through both autocrine and paracrine signaling. Furthermore, KSHV spontaneous lytic replication, and KSHV reactivation from latency induced by oxidative stress, hypoxia, and proinflammatory and proangiogenic cytokines are mediated by H2O2. Mechanistically, H2O2 induction of KSHV reactivation depends on the activation of mitogen-activated protein kinase ERK1/2, JNK, and p38 pathways. Significantly, H2O2 scavengers N-acetyl-L-cysteine (NAC), catalase and glutathione inhibit KSHV lytic replication in culture. In a mouse model of KSHV-induced lymphoma, NAC effectively inhibits KSHV lytic replication and significantly prolongs the lifespan of the mice. These results directly relate KSHV reactivation to oxidative stress and inflammation, which are physiological hallmarks of KS patients. The discovery of this novel mechanism of KSHV reactivation indicates that antioxidants and anti-inflammation drugs could be promising preventive and therapeutic agents for effectively targeting KSHV replication and KSHV-related malignancies
    corecore