31 research outputs found

    Chemical and ecological health of white sucker (Catostomus commersoni) in Rock Creek Park, Washington, D.C., 2003-04 / by Cherie V. Miller ... [et al.] ; prepared in copoeration with the National Park Service

    Get PDF
    Several classes of chemicals that are known or suspected contaminants were found in bed sediment in Rock Creek, including polyaromatic hydrocarbons (PAHs), phthalate esters, organochlorine pesticides, dioxins and furans, trace metals and metalloids (mercury, arsenic, cadmium, chromium, cobalt, copper, lead, nickel, silver, and zinc), and polychlorinated biphenyls (total PCBs and selected aroclors). Concentrations of many of these chemicals consistently exceeded thresholdor chronic-effects guidelines for the protection of aquatic life and often exceeded probable effects levels (PELs). Exceedance of PELs was dependent on the amount of total organic carbon in the sediments. Concurrent with the collection of sediment-quality data, white sucker (Catostomus commersoni) were evaluated for gross-external and internal-organ anomalies, whole-body burdens of chemical contaminants, and gut contents to determine prey. The histopathology of internal tissues of white sucker was compared to contaminant levels in fish tissue and bed sediment. Gut contents were examined to determine preferential prey and thus potential pathways for the bioaccumulation of chemicals from bed sediments. Male and female fish were tested separately. Lesions and other necroses were observed in all fish collected during both years of sample collection, indicating that fish in Rock Creek have experienced some form of environmental stress. No direct cause and effect was determined for chemical exposure and compromised fish health, but a substantial weight of evidence indicates that white sucker, which are bottom-eeding fish and low-order consumers in Rock Creek, are experiencing some reduction in vitality, possibly due to immunosuppression. Abnormalities observed in gonads of both sexes of white sucker and observations of abnormal behavior during spawning indicated some interruption in reproductive success

    Exposure to Perchlorate Induces the Formation of Macrophage Aggregates in the Trunk Kidney of Zebrafish and Mosquitofish

    Get PDF
    Environmental contamination of ground and surface waters by perchlorate, derived from ammonium perchlorate (AP) and other perchlorate salts, is of increasing concern. Exposure to perchlorate can impair the thyroid endocrine system, which is thought to modulate renal and immune function in vertebrates. This study with zebrafish Danio rerio and eastern mosquitofish Gambusia holbrooki examined the histological effects of perchlorate on the trunk kidney, which in teleosts serves excretory and hemopoietic functions and therefore may be a target of perchlorate effects. Adult zebrafish of both sexes were exposed in the laboratory to waterborne, AP-derived perchlorate at measured concentrations of 18 mg/L for 8 weeks. Adult male mosquitofish were exposed to waterborne sodium perchlorate at measured perchlorate concentrations of 1–92 mg/L for 8 weeks. Control fish were kept in untreated water. The region of the body cavity containing the trunk kidney was processed from each fish for histological analysis. Macrophage aggregates (MAs), possible markers of contaminant exposure or immunotoxic effect, were present in the hemopoietic region of the kidney in both species exposed to perchlorate. The estimated percent area of kidney sections occupied by MAs was greater in zebrafish exposed to perchlorate at 18 mg/L (P , 0.05) than in controls. In male mosquitofish, the incidence of renal MAs increased proportionally with sodium perchlorate concentration and was significantly different from that of controls at 92 mg/L (P , 0.05). These observations confirm that in fish the kidney is affected by exposure to perchlorate. The concentrations of perchlorate at which the effects were noted are relatively high but within the range reported in some contaminated habitats

    Widespread occurrence of intersex in black basses (\u3ci\u3eMicropterus\u3c/i\u3e spp.) from U.S. rivers, 1995–2004

    Get PDF
    Intersex occurrence in freshwater fishes was evaluated for nine river basins in the United States. Testicular oocytes (predominantly male testes containing female germ cells) were the most pervasive form of intersex observed, even though similar numbers of male (n = 1477) and female (n = 1633) fish were examined. Intersex was found in 3% of the fish collected. The intersex condition was observed in four of the 16 species examined (25%) and in fish from 34 of 111 sites (31%). Intersex was not found in multiple species from the same site but was most prevalent in largemouth bass (Micropterus salmoides; 18% of males) and smallmouth bass (M. dolomieu; 33% of males). The percentage of intersex fish per site was 8–91% for largemouth bass and 14–73% for smallmouth bass. The incidence of intersex was greatest in the southeastern United States, with intersex largemouth bass present at all sites in the Apalachicola, Savannah, and Pee Dee River Basins. Total mercury, trans-nonachlor, p,p\u27-DDE, p,p\u27-DDD, and total PCBs were the most commonly detected chemical contaminants at all sites, regardless of whether intersex was observed. Although the genotype of the intersex fish was not determined, the microscopic appearance of the gonads, the presence of mature sperm, and the concentrations of sex steroid hormones and vitellogenin indicate the intersex bass were males. Fewre productive endpoints differed significantly among male and intersex bass; plasma vitellogenin concentration in males was not a good indicator of intersex presence. Hierarchical linkages of the intersex condition to reproductive function will require a more quantitative measure of intersex (e.g. severity index) rather than presence or absence of the condition. The baseline incidence of intersex gonadal tissue in black basses and other freshwater fishes is unknown, but intersex prevalence may be related to collection season, age, and endocrine active compounds in the environment. Intersex was not found in largemouth bass older than five years and was most common in 1–3-year-old male largemouth bass. The cause(s) of intersex in these species is also unknown, and it remains to be determined whether the intersex we observed in largemouth and smallmouth bass developed during sex differentiation in early life stages, during exposure to environmental factors during adult life stages, or both

    Reproductive Health of Bass in the Potomac, USA, Drainage: Part 1. Exploring the Effects of Proximity to Wastewater Treatment Plant Discharge

    Get PDF
    Intersex (specifically, testicular oocytes) has been observed in male smallmouth bass (SMB; Micropterus dolomieu) and other centrarchids in the South Branch of the Potomac River, USA, and forks of the Shenandoah River, USA, during the past five years. This condition often is associated with exposure to estrogenic endocrine-disrupting chemicals in some fish species, but such chemicals and their sources have yet to be identified in the Potomac. In an attempt to better understand the plausible causes of this condition, we investigated the reproductive health of bass sampled up- and downstream of wastewater treatment plant (WWTP) effluent point sources on the Potomac River in Maryland, USA. Smallmouth bass were sampled from the Conococheague Creek and the Monocacy River, and largemouth bass (LMB; Micropterus salmoides) were collected near the Blue Plains WWTP on the mainstem of the Potomac River. Chemical analyses of compounds captured in passive samplers at these locations also were conducted. A high prevalence of intersex (82–100%) was identified in male SMB at all sites regardless of collection area. A lower prevalence of intersex (23%) was identified in male LMB collected at the Blue Plains site. When up- and downstream fish were compared, significant differences were noted only in fish from the Conococheague. Differences included condition factor, gonadosomatic index, plasma vitellogenin concentration, and estrogen to testosterone ratio. In general, chemicals associated with wastewater effluent, storm-water runoff, and agriculture were more prevalent at the downstream sampling sites. An exception was atrazine and its associated metabolites, which were present in greater concentrations at the upstream sites. It appears that proximity to effluent from WWTPs may influence the reproductive health of bass in the Potomac watershed, but inputs from other sources likely contribute to the widespread, high incidence of testicular oocytes

    Finfish and aquatic invertebrate pathology resources for now and the future

    Get PDF
    Utilization of finfish and aquatic invertebrates in biomedical research and as environmental sentinels has grown dramatically in recent decades. Likewise the aquaculture of finfish and invertebrates has expanded rapidly worldwide as populations of some aquatic food species and threatened or endangered aquatic species have plummeted due to overharvesting or habitat degradation. This increasing intensive culture and use of aquatic species has heightened the importance of maintaining a sophisticated understanding of pathology of various organ systems of these diverse species. Yet, except for selected species long cultivated in aquaculture, pathology databases and the workforce of highly trained pathologists lag behind those available for most laboratory animals and domestic mammalian and avian species. Several factors must change to maximize the use, understanding, and protection of important aquatic species: 1) improvements in databases of abnormalities across species; 2) standardization of diagnostic criteria for proliferative and nonproliferative lesions; and 3) more uniform and rigorous training in aquatic morphologic pathology

    Finfish and aquatic invertebrate pathology resources for now and the future

    Get PDF
    Utilization of finfish and aquatic invertebrates in biomedical research and as environmental sentinels has grown dramatically in recent decades. Likewise the aquaculture of finfish and invertebrates has expanded rapidly worldwide as populations of some aquatic food species and threatened or endangered aquatic species have plummeted due to overharvesting or habitat degradation. This increasing intensive culture and use of aquatic species has heightened the importance of maintaining a sophisticated understanding of pathology of various organ systems of these diverse species. Yet, except for selected species long cultivated in aquaculture, pathology databases and the workforce of highly trained pathologists lag behind those available for most laboratory animals and domestic mammalian and avian species. Several factors must change to maximize the use, understanding, and protection of important aquatic species: 1) improvements in databases of abnormalities across species; 2) standardization of diagnostic criteria for proliferative and nonproliferative lesions; and 3) more uniform and rigorous training in aquatic morphologic pathology

    The effects of tissue fixation on sequencing and transcript abundance of nucleic acids from microdissected liver samples of smallmouth bass (Micropterus dolomieu).

    No full text
    There is an increasing emphasis on effects-based monitoring to document responses associated with exposure to complex mixtures of chemicals, climate change, pathogens, parasites and other environmental stressors in fish populations. For decades aquatic monitoring programs have included the collection of tissues preserved for microscopic pathology. Consequently, formalin-fixed, paraffin-embedded (FFPE) tissue can be an important reservoir of nucleic acids as technologies emerge that utilize molecular endpoints. Despite the cross-linking effects of formalin, its impact on nucleic acid quality and concentration, amplification, and sequencing are not well described. While fresh-frozen tissue is optimal for working with nucleic acids, FFPE samples have been shown to be conducive for molecular studies. Laser capture microdissection (LCM) is one technology which allows for collection of specific regions or cell populations from fresh or preserved specimens with pathological alterations, pathogens, or parasites. In this study, smallmouth bass (Micropterus dolomieu) liver was preserved in three different fixatives, including 10% neutral buffered formalin (NBF), Z-Fix® (ZF), and PAXgene® (PG) for four time periods (24 hr, 48 hr, seven days, and 14 days). Controls consisted of pieces of liver preserved in RNALater® or 95% ethanol. Smallmouth bass were chosen as they are an economically important sportfish and have been utilized as indicators of exposure to endocrine disruptors and other environmental stressors. Small liver sections were cut out with laser microdissection and DNA and RNA were purified and analyzed for nucleic acid concentration and quality. Sanger sequencing and the NanoString nCounter® technology were used to assess the suitability of these samples in downstream molecular techniques. The results revealed that of the formalin fixatives, NBF samples fixed for 24 and 48 hr were superior to ZF samples for both Sanger sequencing and the Nanostring nCounter®. The non-formalin PAXgene® samples were equally successful and they showed greater stability in nucleic acid quality and concentration over longer fixation times. This study demonstrated that small quantities of preserved tissue from smallmouth bass can be utilized in downstream molecular techniques; however, future studies will need to optimize the methods presented here for different tissue types, fish species, and pathological conditions

    Exposure and Food Web Transfer of Pharmaceuticals in Ospreys (\u3ci\u3ePandion haliaetus\u3c/i\u3e): Predictive Model and Empirical Data

    Get PDF
    The osprey (Pandion haliaetus) is a well‐known sentinel of environmental contamination, yet no studies have traced pharmaceuticals through the water–fish–osprey food web. A screening‐level exposure assessment was used to evaluate the bioaccumulation potential of 113 pharmaceuticals and metabolites, and an artificial sweetener in this food web. Hypothetical concentrations in water reflecting “wastewater effluent dominated” or “dilution dominated” scenarios were combined with pH‐specific bioconcentration factors (BCFs) to predict uptake in fish. Residues in fish and osprey food intake rate were used to calculate the daily intake (DI) of compounds by an adult female osprey. Fourteen pharmaceuticals and a drug metabolite with a BCF greater than 100 and a DI greater than 20 μg/kg were identified as being most likely to exceed the adult human therapeutic dose (HTD). These 15 compounds were also evaluated in a 40 day cumulative dose exposure scenario using first-order kinetics to account for uptake and elimination. Assuming comparable absorption to humans, the half‐lives (t1/2) for an adult osprey to reach the HTD within 40 days were calculated. For 3 of these pharmaceuticals, the estimated t1/2 in ospreys was less than that for humans, and thus an osprey might theoretically reach or exceed the HTD in 3 to 7 days. To complement the exposure model, 24 compounds were quantified in water, fish plasma, and osprey nestling plasma from 7 potentially impaired locations in Chesapeake Bay.Of the 18 analytes detected in water, 8 were found in fish plasma, but only 1 in osprey plasma (the antihypertensive diltiazem). Compared to diltiazem detection rate and concentrations in water (10/12 detects

    Local and Regional Evaluation of Smallmouth Bass Population Genetic Structure in the Susquehanna River Basin

    No full text
    Smallmouth bass (Micropterus dolomieu) in the Susquehanna River basin have been displaying characteristics of disease and endocrine disruption (ED) for several years, including gross lesions and the presence of intersex. Since the initial observations of disease and ED, a wide range of potential environmental stressors have been identified including pathogens, water quality, and contaminants. Because of the life history characteristics of smallmouth bass in this system, which often spawn in smaller tributaries to the Susquehanna River and overwinter in the main-stem, it is challenging to link processes and ecological conditions in the river and the surrounding landscape that may be contributing to the observed disease and ED. To do so requires gaining an understanding of how smallmouth bass move throughout the river system and to define how they may function collectively as a population(s). Although a radio-telemetry study on two tributaries and a section of the Susquehanna River demonstrated movements relating to spawning and overwintering, resulting in intermixing of tributary and river-tagged fish, the population-level implications of these movements are unclear. One approach to address this question is through the use of highly variable genetic markers to quantify genetic variation within smallmouth bass from numerous sites within the Susquehanna River basin. This study aims to use population genetic tools to evaluate the structure and connectivity of smallmouth bass populations at both a local and regional scale across the Susquehanna River basin. Genetic samples were collected from 24 sites, including main-stem river sites that were paired with tributary locations to assess local gene flow between main-stem and tributary systems. A total of 1,034 fin clips were collected for genetic analysis during prespawn conditions and are being analyzed with microsatellite markers to investigate differences within and among populations. Laboratory analysis is currently underway, and results aim to provide information on the connectivity and genetic structure of populations as they may correlate to observed disease and other health characteristics and therefore aid in management
    corecore