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a b s t r a c t

Intersex occurrence in freshwater fishes was evaluated for nine river basins in the United States. Testicular
oocytes (predominantly male testes containing female germ cells) were the most pervasive form of inter-
sex observed, even though similar numbers of male (n = 1477) and female (n = 1633) fish were examined.
Intersex was found in 3% of the fish collected. The intersex condition was observed in four of the 16 species
examined (25%) and in fish from 34 of 111 sites (31%). Intersex was not found in multiple species from the
same site but was most prevalent in largemouth bass (Micropterus salmoides; 18% of males) and small-
mouth bass (M. dolomieu; 33% of males). The percentage of intersex fish per site was 8–91% for largemouth
bass and 14–73% for smallmouth bass. The incidence of intersex was greatest in the southeastern United
States, with intersex largemouth bass present at all sites in the Apalachicola, Savannah, and Pee Dee
River Basins. Total mercury, trans-nonachlor, p,p′-DDE, p,p′-DDD, and total PCBs were the most commonly
detected chemical contaminants at all sites, regardless of whether intersex was observed. Although the
genotype of the intersex fish was not determined, the microscopic appearance of the gonads, the presence
of mature sperm, and the concentrations of sex steroid hormones and vitellogenin indicate the intersex
bass were males. Few reproductive endpoints differed significantly among male and intersex bass; plasma
vitellogenin concentration in males was not a good indicator of intersex presence. Hierarchical linkages
of the intersex condition to reproductive function will require a more quantitative measure of intersex
(e.g. severity index) rather than presence or absence of the condition. The baseline incidence of intersex
gonadal tissue in black basses and other freshwater fishes is unknown, but intersex prevalence may be
related to collection season, age, and endocrine active compounds in the environment. Intersex was not
found in largemouth bass older than five years and was most common in 1–3-year-old male largemouth
bass. The cause(s) of intersex in these species is also unknown, and it remains to be determined whether
the intersex we observed in largemouth and smallmouth bass developed during sex differentiation in
early life stages, during exposure to environmental factors during adult life stages, or both.

Published by Elsevier B.V.

1. Introduction

Recent reports of intersex fish in numerous water bodies have
stimulated widespread interest. Intersex is a general term used to
describe the presence of both male and female characteristics in an
individual fish. Ovotestis (or testicular oocytes) and testis–ova are
considered pathological conditions that commonly typifies inter-
sex in normally gonochoristic species (Hecker et al., 2006). This
condition is not routinely observed macroscopically in most fish
species and generally requires microscopic examination of the
gonad. Different terminology has been used to describe intersex
gonads. Intersex is commonly described as the presence of female

∗ Corresponding author. Tel.: +1 573 876 1808; fax: +1 573 876 1896.
E-mail address: jhinck@usgs.gov (J.E. Hinck).

germ cells, or oocytes, within a predominantly male gonad (Nolan
et al., 2001), but has also been used to describe male germ cells, or
spermatocytes, within a predominantly female gonad (Vine et al.,
2005). We will refer to gonads with mixed germ cells of both sexes
as intersex.

The mechanism or mechanisms responsible for intersex is
not known, but many factors including exogenous steroids,
temperature, pH, behavioral cues, and pollutants can influence
sex differentiation in fish (Devlin and Nagahama, 2002). Steroid
hormones (e.g. 17�-estradiol, 11-ketotestosterone) are critical
in early sex differentiation; they direct the development of the
gonad into ovarian or testicular tissue during gonadogenesis and
gametogenesis (Devlin and Nagahama, 2002; Piferrer, 2001). Fish
are most responsive to the action of endogenous and exogenous
steroids before sex differentiation (i.e. during the labile period;
Piferrer, 2001); therefore, sex differentiation in fish can be influ-
enced by acute exposure to sex steroids (estrogens or androgens)

0166-445X/$ – see front matter. Published by Elsevier B.V.
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or aromatase inhibitors during the early stages of sex determi-
nation (Jobling et al., 1998). In general, estrogen exposure leads
to feminization and androgen exposure leads to masculinization.
Fish develop at different rates; therefore, the timing of the labile
period is species specific, ranging from newly hatched larvae in
salmonids to juveniles in seabass (Piferrer, 2001).

Exposure to a wide variety of chemicals or to mixtures of envi-
ronmental pollutants can induce intersex (Nash et al., 2004; Zillioux
et al., 2001). These varied chemical stressors all have the ability to
cause primary or secondary effects on the endocrine system asso-
ciated with the hypothalamus–pituitary–gonadal axis (Cooper and
Kavlock, 1997) and as such are collectively referred to as endocrine
active compounds (EACs). EACs include organochlorine pesticides,
polychlorinated biphenyls (PCBs), heavy metals, pharmaceuticals,
and surfactants and are diverse in terms of their production, use,
distribution, and persistence in the environment. Fish exposed to
EACs have exhibited a variety of reproductive problems such as
morphological dysgenesis, reduced fecundity, abnormal gamete
production, and sex reversal (Mills and Chichester, 2005). EACs are
routinely found in surface waters and consequently may affect the
reproductive health of fish populations (Jobling et al., 1998; Kime,
1999; Kolpin et al., 2002; Vajda et al., 2008).

The intersex condition in fish has been suggested as an indica-
tor of exposure to EACs. Association between intersex occurrence
and EAC presence in freshwater and marine environments have
been reported by numerous studies over the last decade (Anderson
et al., 2003; Baldigo et al., 2006; Blazer et al., 2007; Jobling et al.,
1998; Lavado et al., 2004; Vajda et al., 2008; Woodling et al., 2006).
For example, the increased prevalence of intersex in male roach
(Rutilus rutilus) has been correlated positively with concentrations
of wastewater treatment plant effluent (Bjerregaard et al., 2006;
Jobling et al., 1998). Similarly, EACs from treated sewage and agri-
culture have been suggested as a potential cause of greater intersex
prevalence in smallmouth bass (Micropterus dolomieu) (Baldigo et
al., 2006; Blazer et al., 2007). The occurrence of intersex in white
sucker (Catostomus commersoni) was also greater in streams dom-
inated by wastewater effluent (Vajda et al., 2008; Woodling et al.,
2006).

Surveys in which intersex in fish have been evaluated systemat-
ically across a large geographic range is an important component of
aquatic biomonitoring efforts in Europe (Allen et al., 1999; Jobling
et al., 1998; Minier et al., 2000; Stentiford et al., 2003). For example,
intersex prevalence was 0–9% in male flounder (Platichthys flesus)
from United Kingdom estuaries (Allen et al., 1999; Stentiford et
al., 2003). Jobling et al. (1998) reported that incidence of inter-
sex ranged from 4% to 100% in male roach from various rivers in
the United Kingdom and suggested that wastewater effluent was
involved with occurrence of the condition. In a subsequent study,
wild intersex roach had decreased milt production, sperm motility,
and fertilization success compared to histologically normal male
roach (Jobling et al., 2002). Intersex prevalence ranged from 0% to
25% in roach and 0% to 3.6% in chub (Leuciscus cephalus) from rivers
in England and France (Minier et al., 2000). Intersex prevalence
differed in eelpout (Zoarces viviparous; 0–28%), three spined stick-
leback (Gasterosteus aculeatus; 0–13%), and perch (Perca fluviatilis;
0–33%) from coastal waters and small rivers in Germany (Gercken
and Sordyl, 2002). Other regional studies have reported intersex in
wild populations of common carp (Cyprinus carpio) in Spain (Solé et
al., 2003), gudgeon (Gobio gobio) in the United Kingdom (van Aerle
et al., 2001), bream (Abramis brama) in The Netherlands and Ger-
many (Hecker et al., 2002; Vethaak et al., 2002), and flounder in
Denmark (Bjerregaard et al., 2006).

The incidence of intersex in fish is unknown for most aquatic
environments in North America. Intersex in freshwater fishes
was reported in a national contaminant study in the United
States (Hinck et al., 2006, 2007a,b, 2008a; Schmitt, 2002; Schmitt

et al., 2005). In contrast to European studies, site selection for
this study was not limited to sites with known EACs sources
(e.g. wastewater treatment plants) but represented a range of
contaminant sources. The national study measured the con-
centrations of “legacy contaminants” (e.g. mercury, PCBs, and
dichlorodiphenyltrichloroethane (DDT) isomers), some of which
have been associated with endocrine disruption in fish. More
contemporary EACs such as synthetic and natural hormones,
pharmaceuticals, water-soluble pesticides, and surfactants were
not measured. Biological responses (including morphological and
reproductive endpoints) were included as general indicators of
exposure to a broader range of chemicals including those that tend
not to bioaccumulate. Intersex was anticipated to be observed occa-
sionally but was not expected to be widespread when the national
survey was initiated in 1995. However, intersex was observed in
more fish as sampling progressed, and the need to summarize this
information on a larger geographic scale became apparent. The gen-
erally low occurrence of intersex fish in individual basins precluded
statistical analysis of these data in the individual basin studies. Our
objectives are therefore to summarize the occurrence of intersex
in fish from nine large U.S. river basins by species, site, and basin;
determine if intersex prevalence is associated with reproductive
and morphological endpoints; and explore associations between
intersex occurrence and legacy contaminants.

2. Methods

Details of the sampling, field, and laboratory procedures have
been described previously (Hinck et al., 2006, 2007a,b, 2008a;
Schmitt, 2002; Schmitt et al., 2005). A brief summary is presented
here.

2.1. Sampling and field procedures

Fish were collected from 111 sites in nine U.S. river basins
between 1995 and 2004 (Supplemental Table 1). Sites were located
in the Apalachicola River Basin (n = 3), Colorado River Basin (n = 14),
Columbia River Basin (n = 16), Mobile River Basin (n = 4), Mississippi
River Basin (n = 48), Pee Dee River Basin (n = 3), Rio Grande Basin
(n = 10), Savannah River Basin (n = 3), and Yukon River Basin (n = 10;
Supplemental Table 1). Each site was sampled once, usually in the
fall. Sampling sites were located on the mainstem and large tribu-
taries in each basin without regard to contaminants; however, the
sites did represent a range of contaminant sources. Specific contam-
inant sources were not identified at each site, but general land use
was determined (e.g., urban areas, row crop, pastureland, indus-
trial processing, etc.). Most fish were captured by electrofishing;
hook-and-line and nets (gill, fyke, trammel, or hoop) were used
in the Yukon River Basin, Red Bluff Lake (Site 65), Elephant Butte
Reservoir (Site 63), and Arroyo Colorado (Site 511). One piscivo-
rous and one benthivorous species were sought at each site. Target
species were largemouth bass (Micropterus salmoides), smallmouth
bass, and common carp, but these species were not collected at
all sites (Supplemental Table 1). Alternate species included spot-
ted bass (Micropterus punctulatus), white bass (Morone chrysops),
striped bass (Morone saxatilis), channel catfish (Ictalurus puncta-
tus), flathead catfish (Pylodictus olivaris), northern pike, burbot (Lota
lota), brown trout (Salmo trutta), largescale sucker (Catostomus
macrocheilus), longnose sucker (C. catostomus), and white sucker.
The collection target at each site was 10 (each) adult male and
female fish of similar length and weight for each species. Fish were
held in aerated live-wells or net pens until processed (usually less
than 3 h).

A field necropsy was performed on each fish. Briefly, blood sam-
ples, obtained from the posterior caudal artery and vein with a
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heparinized needle and syringe, were centrifuged. The plasma was
aspirated and frozen in dry ice for vitellogenin and sex steroid hor-
mone analyses. The fish was then weighed, measured, and killed
with a blow to the head. Scales, spines, or otoliths were collected
for age determination. The abdominal cavity was dissected open
to permit observation of the internal organs. The sex of the fish,
along with observations of external and internal features, was
recorded. The liver, spleen, and gonads were removed and weighed.
Pieces of liver were collected and frozen in dry ice for analysis
of ethoxyresorufin O-deethylase (EROD) activity. Pieces of liver,
spleen, and gonad were preserved in 10% neutral buffered forma-
lin for histopathological examination. Two to eight pieces of the
gonad were collected from either the posterior tip of the gonads
(Rio Grande and Columbia River Basins) or multiple positions along
the entire length of the gonad (all other basins). Intersex was not
observed macroscopically in any fish. All remaining tissues (those
not frozen or fixed) were wrapped in aluminum foil and frozen for
chemical analysis.

2.2. Laboratory analyses

Gonad samples from 16 species were examined microscopically
for the intersex condition. Sections of each piece of gonad collected
in the field were placed into cassettes and processed for micro-
scopic evaluation. Samples were generally transverse sections of
the gonad, but the whole gonad was embedded and sectioned lon-
gitudinally if the gonad was very small. Two to eight tissue pieces
were dehydrated in alcohol, embedded in paraffin, sectioned at
6 �m, stained with hematoxylin and eosin (H&E) (Luna, 1992), and
examined microscopically. Fish were identified as intersex when
oocytes were observed within testicular tissue or when spermato-
cytes were observed within ovarian tissue. Reproductive stage was
also determined in ovary (0–5) and testes (0–4) sections (Blazer,
2002).

Several morphological and reproductive endpoints in addi-
tion to gonadal intersex were also determined. Condition factor,
hepatosomatic index, splenosomatic index, gonadosomatic index,
and health assessment index were calculated from field necropsy
measurements (Hinck et al., 2008b). Hepatic EROD activity was
determined on microsomal fractions (Whyte et al., 2000), and
protein content was determined using the fluorescamine protein
assay (Lorenzen and Kennedy, 1993). Histopathological analysis of
splenic macrophage aggregates (MAs; MA-#, the number of aggre-
gates in 2 mm2 of tissue; MA-A, the mean size (area) of aggregates
within those 2 mm2; MA-%, the percentage of the tissue area occu-
pied by aggregates) has been described by Blazer (2002). Plasma
vitellogenin concentrations were determined by enzyme-linked
immunosorbent assay (Denslow et al., 1999), and plasma 17�-
estradiol and 11-ketotestosterone concentrations were measured
by radioimmunoassay (Hinck et al., 2008a).

Fish carcasses were shipped to the laboratory frozen and stored
at −20 C until prepared for chemical analysis. Individual car-
casses were partly thawed, cut into pieces, and ground to a fine
texture. The ground fish were then mixed together to create a
single homogenous composite sample for each site, species, and
sex combination. Details of the analytical methods and quality
assurance/quality control procedures are described in the orig-
inal studies (Hinck et al., 2006, 2007a,b, 2008a; Schmitt, 2002;
Schmitt et al., 2005). Briefly, one sub-sample (10 g) of each com-
posite sample was solvent-extracted and analyzed gravimetrically
for lipid content and by high-resolution capillary gas chromatogra-
phy with electron capture detection for organochlorine chemical
residues (hexachlorobenzene, hexachlorocyclohexanes, dieldrin,
endrin, chlordanes, DDT isomers, mirex, and toxaphene) and total
PCBs after size exclusion and adsorption column cleanup proce-
dures. A second composite sub-sample (100 g) was freeze-dried

for elemental analysis, and percent moisture was determined
as weight lost during lyophilization. Sub-samples were acid-
digested and analyzed by atomic absorption spectroscopy for
arsenic, lead (1995 and 1997 samples), and selenium and by
inductively coupled plasma emission spectroscopy or inductively
coupled plasma mass spectroscopy for other elements [barium,
cadmium, chromium, copper, magnesium, manganese, molybde-
num, nickel, lead (2002–2004 samples), strontium, vanadium, and
zinc]. Thermal combustion, amalgamation, and atomic absorption
spectroscopy were used to analyze directly for total mercury in
2002, 2003, and 2004 composite sub-samples. A third composite
sub-sample (10 g) was solvent-extracted and subjected to reac-
tive cleanup for use in the H4IIE bioassay (Whyte et al., 2004).
Concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalent
doses (TCDD-EQ; pg/g wet weight (ww)) were determined by slope
ratio assay (Ankley et al., 1991).

2.3. Statistical analyses

All computations and statistical analyses were performed with
SAS Version 9.1 (SAS Institute, Cary, NC). Arithmetic means and
standard errors for biological endpoints were computed. Censored
values (those less than the analytical limit of detection) for EROD
and plasma vitellogenin concentrations were replaced by one-half
the LOD in all statistical analyses. All data were log10-transformed
to approximate normality for statistical analysis. Statistical analy-
ses were only performed for species in which the intersex condition
was observed in >10% of the fish (male smallmouth and largemouth
bass). Most intersex fish were predominately male (gonads macro-
scopically appeared to be normal testes with a few oocytes found
in the histological sections); therefore, intersex bass were com-
pared to male bass. Analysis-of-variance (ANOVA) using PROC GLM
followed by Fisher’s restricted least significant difference (Saville,
1990) was used to test for differences in biological endpoints and
chemical concentrations between intersex and male bass within
and among basins. Species and basins were analyzed separately
after biological endpoint differences between and among these fac-
tors were determined to be significant. Differences in geometric
mean concentrations of only the most frequently detected chemical
contaminants, mercury and p,p′-DDE, between sites with and with-
out intersex bass were tested in order to alleviate limit of detection
issues (Hinck et al., 2008b). Chemical contaminant concentrations
were analyzed in whole body composite samples (by sex, species,
and site) whereas biological endpoints were measured in individual
fish; therefore, contaminant concentrations in individual intersex
fish were not available.

3. Results

3.1. Occurrence of intersex fish

Overall, only 97 of 3110 fish (3%) were intersex; 96 of the 97
intersex fish were males with gonads comprising primarily testic-
ular tissue with a few previtellogenic oocytes. Intersex occurrence
differed among species and basin. The intersex condition was found
in eight of the nine basins sampled and four of 16 species exam-
ined. Intersex was observed in fish from 34 of 111 sites (31%;
Table 1, Fig. 1). At sites where intersex fish were found, the intersex
condition was typically observed in a small number of fish (gen-
erally n < 3). The condition was not observed in multiple species
from a single site. The intersex condition was observed in com-
mon carp, channel catfish, smallmouth bass, and largemouth bass,
and was most prevalent in smallmouth bass and largemouth bass
(Fig. 2A–D). Intersex was not observed in spotted bass (n = 21),
hybrid largemouth/spotted bass (n = 1), striped bass (n = 1), white
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Table 1
Occurrence of intersex by speciesa.

Family, species Female Male

No. fish with
intersex/n

% No. sites with
intersex/n

% No. fish with
intersex/n

% No. sites with
intersex/n

%

Centrarchidae
Largemouth bass (Micropterus salmoides) 0/426 0 0/55 0 70/390 18 23/52 44
Smallmouth bass (Micropterus dolomieu) 0/90 0 0/15 0 23/70 33 7/16 44

Cyprinidae
Common carp (Cyprinus carpio) 1/798 0.1 1/89 1 0/774 0 0/89 0

Ictaluridae
Channel catfish (Ictalurus punctatus) 0/44 0 0/6 0 3/42 7 3/6 50

a Intersex was not observed in largescale sucker, longnose sucker, white sucker, spotted bass, northern pike, flathead catfish, burbot, striped bass, white bass, or brown
trout.

bass (n = 30), hybrid striped/white bass (n = 3), burbot (n = 13), flat-
head catfish (n = 10), northern pike (n = 156), largescale sucker
(n = 157), longnose sucker (n = 45), white sucker (n = 19), or brown
trout (n = 20); however, sample sizes were notably small for some
of these species.

Intersex was not observed in any of the 774 male common carp
examined, but one of 798 female carp (0.1%) was intersex (Table 1).
The gonads of the intersex female carp contained primarily ovarian
tissue with some sperm (Fig. 2D). This fish was one of eight female
carp collected from Site 320 (Colorado R. at Willow Beach, Arizona).
Its ovaries were identified as abnormal during the field necropsy

because both gonadal lobes were red and macroscopically devoid
of eggs (i.e. similar to a spent ovary); normal carp ovaries typically
contain yellow or brown eggs.

Intersex was observed in three of 42 male channel catfish
(7%), but they represented three of six sites from which this
species was collected and examined microscopically (Table 1,
Fig. 1). At the three sites from which intersex fish were col-
lected, the percentage of intersex channel catfish per site ranged
from 13% to 33%. One intersex catfish was found at each of the
following sites in the Colorado River Basin: Sites 312 (Green R.
at Ouray National Wildlife Refuge, Utah), 317 (San Juan R. at

Fig. 1. Occurrence of intersex in fish. LMB, largemouth bass; SMB, smallmouth bass; Other, channel catfish (Sites 312, 317, and 324) and common carp (Site 320). Numbers
inside symbols represent site numbers. ARB, Apalachicola River Basin; CORB, Colorado River Basin; CRB, Columbia River Basin; MORB; Mobile River Basin; MRB, Mississippi
River Basin; PRB, Pee Dee River Basin; RGB, Rio Grande Basin; SRB, Savannah River Basin; YRB, Yukon River Basin. See Supplemental Table 1 for site descriptions.
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Fig. 2. Histological observations of intersex in fish. (A) Testicular oocytes (arrows) observed within testes of a largemouth bass from the Pee Dee River. Note mature sperm
(circle) within the tubules. (B) Oocytes (arrows) within testes of a smallmouth bass from the Colorado River. (C) Oocyte (arrow) within an immature testes of a channel catfish
from the Colorado River. (D) Foci of sperm (arrows) within the ovary of a common carp from the Colorado River. Scale bar = 100 �m. H&E stain.

Hogback Diversion, New Mexico), and 324 (Gila R. at Phoenix,
Arizona). The gonads of channel catfish from sites in the Rio
Grande Basin (Sites 511 and 516) were not examined microscopi-
cally.

Intersex smallmouth bass were found in the Columbia, Colorado,
and Mississippi River Basins; the one male smallmouth bass from
the Rio Grande Basin (Site 514) was not intersex. Intersex was

observed in 23 of 70 male smallmouth bass (33%) from 7 of 16
sites (44%) (Table 1, Fig. 1). At sites where intersex smallmouth
bass were collected, the percentage of intersex ranged from 14% to
73%. The occurrence of intersex was greatest in male smallmouth
bass from Sites 111 (73%; Mississippi R. at Lake City, Minnesota),
311 (70%; Yampa R. at Lay, Colorado), 42 (43%; Salmon R. at Rig-
gins, Idaho), and 502 (67%; Columbia R. at Warrendale, Oregon)

Fig. 3. Intersex condition in male fish by site. The number of intersex in female fish is presented for Site CORB 320. Other, channel catfish (Sites CORB 312, CORB 317, and
CORB 324) and common carp (Site CORB 320). ARB, Apalachicola River Basin; CORB, Colorado River Basin; CRB, Columbia River Basin; MORB; Mobile River Basin; MRB,
Mississippi River Basin; PRB, Pee Dee River Basin; RGB, Rio Grande Basin; SRB, Savannah River Basin. See Supplemental Table 1 for site descriptions.
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Fig. 4. Intersex condition in largemouth bass (LMB) and smallmouth bass (SMB) by age.

(Fig. 3). Percent intersex was lower at Sites 67 (25%; Allegheny
R. at Natrona, Pennsylvania), 72 (25%; Wisconsin R. at Woodman,
Wisconsin), and 74 (14%; Mississippi R. at Little Falls, Minnesota),
where only one intersex smallmouth bass per site was found
(Fig. 3).

Intersex largemouth bass were found in the Colorado, Rio
Grande, Mississippi, Mobile, Apalachicola, Savannah, and Pee Dee
River Basins; male largemouth bass from the Columbia River Basin
were not intersex. Intersex was observed in 70 of 390 male large-
mouth bass (18%) from 23 of 52 sites (44%) (Table 1, Fig. 1). At
sites where intersex fish were observed, the percentage of inter-
sex largemouth bass per site ranged from 8 to 91% and was most
prevalent in the southeastern United States. Intersex occurrence
was greatest in male largemouth bass from Sites 338 (91%; Pee
Dee R. at Bucksport, South Carolina), 336 (67%; Pee Dee R. at Rock-
ingham, North Carolina), 337 (64%; Pee Dee R. at Pee Dee, South
Carolina), 332 (60%; Apalachicola R at Blountstown, Florida), 335
(50%; Savannah R. at Port Wentworth, Georgia), 334 (50%; Savannah
R. at Sylvania, Georgia), 333 (43%; Savannah R. at Augusta, Georgia),
330 (30%; Chattahoochee R. at Omaha, Georgia), and 331 (30%; Flint
R. at Albany, Georgia) (Fig. 3). A lower occurrence of intersex was

also observed in male largemouth bass from the Mobile River Basin
at Sites 326 (25%; Tombigbee R. at Lavaca, Alabama), 329 (25%;
Mobile R. at Bucks, Alabama), and 327 (10%; Coosa R. at Childer-
sburg, Alabama) (Fig. 3). Relatively high proportions of intersex
largemouth bass were observed at three sites in the lower Rio
Grande Basin including Sites 512 (50%; Rio Grande at Brownsville,
Texas), 513 (44%; Rio Grande at Falcon Dam, Texas), and 16 (20%;
Rio Grande at Mission, Texas) (Fig. 3). In addition, 40% of male large-
mouth bass from Sites 322 (Colorado R. at Imperial Dam, Arizona)
and 323 (Gila R. at Hayden, Arizona) in the Colorado River Basin
were intersex (Fig. 3). Intersex occurrence was lower in males at
Sites 78 (22%; Verdigris R. at Oolagah, Oklahoma), 213 (14%; Wolf
R. at LaGrange, Tennessee); 83 (11%; Missouri R. at Hermann, Mis-
souri), 26 (10%; Illinois R. at Beardstown, Illinois), 81 (8%; Red
R. at Alexandria, Louisiana), and 82 (8%; Red R. at Lake Texoma,
Texas/Oklahoma) in the Mississippi River Basin, typically being
observed in only one fish per site (Fig. 3).

There was no significant difference in the mean age of intersex
and male smallmouth bass (F1,66 = <0.01, P = 0.98; Fig. 4). In con-
trast, intersex largemouth bass were significantly younger than
male largemouth bass (F1,368 = 29.57, P < 0.01; Fig. 4). Age ranged

Table 2
Occurrence of intersex in male largemouth bass (LMB) and smallmouth bass (SMB) by basin, and associations of biological endpoints between male bass with and without
the condition.

Basin, species No. of fish % Intersex fish No. of sites % Sites with intersex fish Significant differences in endpoint means

Mississippi River Basin (1995)
LMB 174 4 22 27 Length (−), MA-# (−)
SMB 27 41 5 80 MA-% (+), 17�-estradiol (+)

Columbia River Basin (1997)
LMB 34 0 7 0 NA
SMB 24 21 8 25 MA-A (+), HAI (−)

Rio Grande Basin (1997)
LMB 29 35 4 75 None
SMB 1 0 1 0 NA

Colorado River Basin (2003)
LMB 42 14 6 33 EROD (−)
SMB 18 39 2 50 Age (+), EROD (−), HSI (+), SSI (+), HAI (+)

Apalachicola River Basin (2004)
LMB 30 67 3 100 None

Mobile River Basin (2004)
LMB 36 14 4 75 HSI (+)

Pee Dee River Basin (2004)
LMB 25 80 3 100 Age (−), stage (−)

Savannah River Basin (2004)
LMB 21 48 3 100 None

Biological endpoints for which mean values were significantly different (P < 0.05, one-way ANOVA) between intersex and male bass are noted; +, mean for intersex fish
greater than male fish; −, mean for intersex fish less than male fish. Sampling year is noted in parentheses.
NA, not applicable.
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from 0 to 5 years for intersex largemouth bass and 0 to 12 years for
male largemouth bass (Fig. 4).

3.2. Trends among intersex fish by basin

Few mean biological endpoints differed significantly among
male and intersex smallmouth and largemouth bass within a basin
(Table 2; Supplemental Tables 2 and 3). Intersex largemouth bass
were significantly shorter and had fewer numbers of MAs than male
largemouth bass from the Mississippi River Basin. Mean MA-% and
17�-estradiol concentrations were significantly greater in intersex
smallmouth bass than male smallmouth bass from the Mississippi
River Basin. In the Columbia River Basin, mean MA-A was greater
but mean HAI was lower in intersex smallmouth bass compared to
male smallmouth bass. Mean EROD activity was lower and mean
age, HSI, SSI, and HAI were greater in intersex smallmouth bass than
in male smallmouth bass in the Colorado River Basin. Hepatic EROD
activity was also significantly lower in intersex largemouth bass
compared to male largemouth bass. No biological endpoints were
significant between intersex and male largemouth bass from the
Rio Grande, Apalachicola, and Savannah River Basins. Mean HSI was
significantly greater in intersex largemouth bass than in male large-
mouth bass from the Mobile River Basin. Mean age and stage were
lower in intersex largemouth bass compared to male largemouth
bass in Pee Dee River Basin. Differences in mean condition factor,
gonadosomatic index, vitellogenin, 11-ketotestosterone, and E/KT
were not significant in any ANOVA model (Supplemental Tables 2
and 3).

3.3. Associations between intersex bass and contaminant
concentrations

Twenty-four chemical contaminants including organochlorine
pesticides, total PCBs, TCDD-EQs, and total mercury were mea-
sured in largemouth and smallmouth bass samples (n = 60) across
all basins (Supplemental Table 4). The most commonly detected
contaminants were mercury (n = 60), p,p′-DDE (n = 57), p,p′-DDD
(n = 39), TCDD-EQ (n = 39), PCBs (n = 37), trans-nonachlor (n = 32),
dieldrin (n = 26), cis-nonachlor (n = 25), cis-chlordane (n = 24), and
p,p′-DDT (n = 21). Sites with the greatest number of detected con-
taminants were in the Colorado, Mobile, Apalachicola, Savannah,
and Pee Dee River Basins. However, the limits of detection and
measured concentrations were two orders of magnitude lower
for some organochlorine pesticides in these samples compared
to those from the Mississippi, Rio Grande, and Columbia River
Basins (0.0001 �g/g ww vs. 0.01 �g/g ww). The intersex condition
was not always found in bass from sites with a high number
of detected contaminants. For example, multiple contaminants
were detected in largemouth bass from Sites 24 and 76 in the
Mississippi River Basin and Site 328 in the Mobile River Basin,
although no intersex fish were observed at these sites. Conversely,
some sites such as Sites 512 and 513 in the lower Rio Grande
had relatively high occurrence of intersex with fewer contami-
nants detected. Although the mean concentration of mercury was
greater at sites with intersex largemouth bass (0.24 �g/g ww) com-
pared to sites with only male largemouth bass (0.16 �g/g ww),
these differences were not significant (F1,47 = 3.44, P = 0.07). Mean
mercury concentrations at sites with (0.16 �g/g ww) and with-
out (0.14 �g/g ww) intersex smallmouth bass also did not differ
significantly (F1,9 = 0.17, P = 0.69) nor did mean concentrations of
p,p′-DDE differ between sites with (0.04 �g/g ww) and without
(0.06 �g/g ww) intersex largemouth bass (F1,47 = 0.30, P = 0.59). In
contrast, the mean concentration of p,p′-DDE at sites without inter-
sex smallmouth bass (0.16 �g/g ww) was greater than sites where
the condition was found (0.03 �g/g ww). However, these differ-
ences were also not significant (F1,9 = 3.08, P = 0.11), which was

likely because of the small number of sites with intersex small-
mouth bass.

4. Discussion

4.1. Prevalence of intersex in freshwater fish

Among the species we investigated, intersex was most preva-
lent in male largemouth and smallmouth bass. Predominantly male
testes containing female germ cells were the most pervasive form of
intersex observed, even though equal numbers of male and female
fish were examined. However, the proportion of tissue examined
in individual male bass was likely greater than that in female
bass because the testes are typically smaller than ovaries. Previous
field studies have also reported intersex in largemouth and small-
mouth bass, some at comparable percentages to what we observed
(Anderson et al., 2003; Baldigo et al., 2006; Blazer et al., 2007; James,
1946). James (1946) was among the first to report intersex in large-
mouth bass based on macroscopic observation (one ovary and one
testis) from lakes in Illinois, whereas other studies have reported
microscopic observations of intersex in black basses (Micropterus
spp.). Intersex (testicular oocytes) was reported in male largemouth
(4 of 15) and male smallmouth bass (12 of 33) from contaminated
and reference sites in the Hudson River, New York (Baldigo et al.,
2006). In addition, and in contrast to our results, Baldigo et al. (2006)
observed intersex in males of multiple species at some sites; inter-
sex largemouth and smallmouth bass were collected at one site
and intersex largemouth bass and carp were collected at another.
Intersex (testicular oocytes) was also observed in all of the male
smallmouth bass (n = 15) collected from a reference site and a PCB-
contaminated site on the Kalamazoo River, Michigan (Anderson et
al., 2003). Intersex (testicular oocytes) occurrence in smallmouth
bass in the Potomac River Basin was 69–100% in the spring, 25–67%
in the summer, and up to 100% in the fall but was only 14–36% in
adjacent basins with smaller human populations and less agricul-
ture (Blazer et al., 2007).

To the best of our knowledge, intersex as defined in our study
has not been previously reported in channel catfish. Female chan-
nel catfish with male secondary sexual characteristics have been
observed in the Red River of the North, North Dakota (Hegrenes,
1999). For common carp, other field studies have occasionally
reported a low occurrence of intersex. For example, Lavado et al.
(2004) reported intersex (testicular oocytes) in one of six male com-
mon carp from the Ebro River in Spain, and Baldigo et al. (2006)
reported one intersex male common carp (out of nine) from the
Hudson River, New York. An intersex male common carp with
half testicular tissue and half ovarian tissue in one gonad was
reported in a caged fish study conducted in the Las Vegas Wash,
Nevada (Snyder et al., 2004). Although Snyder et al. (2004) con-
cluded that intersex occurred spontaneously in the farm-raised
male carp (from California) and was not related to EACs in the Las
Vegas Wash, we note that our only intersex carp was found in the
same region (Site 320), downstream of Lake Mead. Nevertheless,
the cause or causes of intersex in the carp from this area remains
unknown.

Of the other species we examined, intersex has been reported
in striped bass (Moser et al., 1983), northern pike (June, 1977;
Vine et al., 2005), white sucker (Sikstrom et al., 1975; Vajda et
al., 2008; Woodling et al., 2006), and brown trout (Körner et al.,
2005; O’Farrell and Peirce, 1989). To the best of our knowledge,
intersex has not been documented in the scientific literature for
largescale sucker, longnose sucker, flathead catfish, burbot, spotted
bass, white bass, or hybrid bass.

The occurrence of intersex in fish relative to EACs has been docu-
mented in field studies, many of which have focused on wastewater
treatment facilities (Jobling et al., 1998; Lavado et al., 2004; Liney et
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al., 2005; Sumpter, 2002; Vajda et al., 2008; Woodling et al., 2006).
However, intersex has also been documented in fish from rural
areas (Blazer et al., 2007), where agricultural runoff can be a signif-
icant source of EACs (Hanselman et al., 2003; Kolodiei and Sedlak,
2007; McDaniel et al., 2008; Orlando et al., 2004). At least one of our
sites (Yampa R. at Lay, Colorado) with a high prevalence of inter-
sex did not have obvious EAC point sources. Other sites with high
occurrence of intersex (e.g. Mississippi R. at Lake City, Minnesota;
Pee Dee R. at Pee Dee and Bucksport, South Carolina) were located
on rivers with dense human populations or industrial and agricul-
tural activities. The presence of intersex bass at all sites in the Pee
Dee, Savannah, and Apalachicola River Basins indicate that the con-
dition may be more prevalent in the southeastern U.S. river basins
than elsewhere and warrants further investigation. We might also
expect high occurrence of intersex largemouth bass in similar agri-
cultural regions (e.g. row crop, livestock) of the lower Mississippi
River (e.g. Mississippi R. at Luling, Louisiana; Big Sunflower R. at
Anguilla, Mississippi; Bogue Phalia R. at Leland, Mississippi; Steele
Bayou R. at Rolling Fork, Mississippi; Tensas R. at Tendal, Louisiana),
but where bass were not collected. Intersex male largemouth bass
were observed at Sites 81 (Red R. at Alexandria, Louisiana) and
82 (Red R. at Lake Texoma, Texas/Oklahoma), where agriculture
is a primary land use. It is also important to note that exposure to
EACs is not the only possible explanation for intersex in fish given
that baseline occurrence of the condition is unknown among most
species of feral fishes.

4.2. Factors to consider when evaluating intersex occurrence

Neither sex determination, which is the genetic and environ-
mental variables and processes that influence phenotypic sex, nor
sex differentiation, which is the manifestation of these processes
into the development of an ovary or testis (Piferrer, 2001; Devlin
and Nagahama, 2002), have been extensively studied in black bass.
Sex-specific genes have been identified in only a few fish species.
More research is needed at the molecular level to understand how
autosomes and sex chromosomes of gonochoristic species, such
as largemouth and smallmouth bass, interact with environmental
variables to influence sexual development (Devlin and Nagahama,
2002; Orlando and Guillette, 2007). Largemouth bass are believed
to exhibit differentiated gonochorism (i.e. primordial germ cells
directly differentiate into an oogonia or spermatogonia) and seem-
ingly do not have hermaphroditic tendencies (Johnston, 1951). All
of the data we have presented on intersex relates to the pheno-
typic sex of the fish. The genotypic sex of our fish is unknown
because sex-specific chromosomal markers have not been iden-
tified for bass. Although we were unable to make a definitive
determination whether the intersex condition observed in bass
was the result of feminized males or masculinized females, the
microscopic appearance of the gonads, the presence of mature
sperm, and the steroid hormone and vitellogenin concentrations
indicate that the intersex bass were males which had been femi-
nized. Additionally, we could not definitively determine whether
reproductive function was inhibited by the intersex condition in
these fish. Oocytes found within the testes were previtellogenic;
mature oocytes were not observed. It remains to be determined
whether the intersex we observed in bass developed during sexual
differentiation in early life stages, during exposure to environmen-
tal factors in adult life stages, or some continuum between these
life stages.

The natural incidence of intersex gonadal tissue among fish
species is unknown, but the prevalence of intersex is poten-
tially related to collection season and age of the fish as well as
to EAC exposure. Blazer et al. (2007) reported that the highest
prevalence and severity of intersex in male smallmouth bass con-
sistently occurred during the pre-spawn–spawning season and

was lower during the post-spawn season. The study also con-
cluded that oocytes may be released with the sperm because
oocytes were observed in the lumen of the ducts of male small-
mouth bass during summer and fall (post-spawn; Blazer et al.,
2007). We sampled our sites once; therefore, the seasonal influ-
ence on intersex prevalence could not be determined. All bass in
our study were collected in the fall (post-spawn season), except
for one male smallmouth bass from Site 506 (pre-spawn season;
Supplemental Table 1). Given these data and the results of Blazer
et al. (2007), the occurrence of intersex in freshwater fish may have
been further underestimated because our study did not include
a seasonal component. Stage of reproductive development (i.e.
pre- and post-spawn) should also be considered when interpreting
intersex data.

Fish age may also be an important determinant of intersex
occurrence in largemouth bass, which can live up to 15 years and
reach sexual maturity by age 1 in the southern United States (Stuber
et al., 1982). Intersex was not found in largemouth bass older than
five years and was most common in 1–3-year-old male largemouth
bass. However, the low incidence of intersex in older fish may be
low due to small sample size of older fish (>6 years old) in our col-
lections. We also note that the intersex condition was observed in
the few fish <1-year-old at a relatively high frequency compared
to normal male largemouth bass. Alternatively, the greater occur-
rence of intersex in younger largemouth bass may be a result of
smaller gonads in younger fish and hence, a larger proportion of
the gonad being examined. An apparent greater frequency of inter-
sex in younger individuals was not observed in smallmouth bass
(Fig. 4b); therefore, the evidence for an age-related frequency dif-
ference is not conclusive from our dataset. Also, the hypothesis that
the intersex male largemouth bass do not survive past 5 years old
seems unlikely since the age distribution curves of male and inter-
sex largemouth bass are similar, with ages 1–4 predominant in both
groups (Fig. 4).

Intersex evaluations were conducted under criteria of simple
presence/absence. Therefore, quantitative assessment of back-
ground rates of intersex prevalence is limited by our approach. A
more quantitative measure of intersex, such as a severity index
ranking system (Bateman et al., 2004; Blazer et al., 2007), is needed
to evaluate background rates of intersex in fish and to define
hierarchical linkages to endocrine function. A more quantitative
assessment of intersex would also provide a stronger basis for
evaluation of factors associated with the intersex condition. The
presence of testicular oocytes in gonads and circulating vitel-
logenin in plasma of male fish have both been used as indicators
of exposure to estrogenic EACs (e.g. Jobling et al., 1998; Vajda et
al., 2008); however, we did not observe significant correlations
between the presence/absence of intersex and the other repro-
ductive endpoints measured in this study (gonadosomatic index,
vitellogenin, 17�-estradiol, and 11-ketotestosterone). Plasma con-
centration of vitellogenin in males was not a good indicator of the
presence of intersex in our study. This lack of a relationship may
not be unexpected, as the complexity of the vitellogenic response
is not as great as the complexities involved with tissue restruc-
turing that occurs with intersex. Estradiol regulates growth and
maturation of oocytes in the ovary and induction of vitellogenin
in the liver, but a more complex regulatory mechanism is most
certainly involved for the development of intersex in male bass.
Alternatively, the lack of a relationship between male vitellogenin
and intersex may indicate that vitellogenin only represents recent
exposure to EACs. Vitellogenin in male fish is indicative of a recent
and/or ongoing exposure to an estrogen or estrogenic compound.
Induction of the protein occurs within days, and the protein can
persist in the plasma for weeks to months after exposure because
male fish have no specific mechanisms to excrete vitellogenin
(Schmid et al., 2002; Thorpe et al., 2007). Induction of vitellogenin
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is a receptor-mediated response, largely controlled through
estrogen receptors in the liver (Sumpter and Jobling, 1995). In
contrast, the biochemical and cellular mechanisms responsible
for the development of intersex in gonadal tissues are not known,
and they may represent a more chronic response in these fishes.
The period of sexual differentiation has been identified as the
most sensitive period for the induction of intersex in some species
including medaka (Oryzias latipes; Koger et al., 2000), roach (Liney
et al., 2005), and rainbow trout (Oncorhynchus mykiss; Krisfalusi
and Nagler, 2000), but intersex can also be induced in later life
stages (Gray et al., 1999; Liney et al., 2005). Interestingly, exposure
to EACs later in life exacerbated the severity of intersex in roach
when the initial exposure occurred at critical stages of sexual
differentiation (Liney et al., 2005). The high prevalence of intersex
in adult largemouth bass and smallmouth bass indicates that
exposures during both early life stages and later life stages may be
important; therefore, multi-generational studies should be con-
ducted to determine the most sensitive life stage (egg to adult) for
black basses. Last, we must consider other environmental factors
that may be important in the induction of intersex in black bass.
The intersex condition may not be entirely dependent on exposure
to xenoestrogens in black basses, and some level or baseline
occurrence of intersex in smallmouth and largemouth bass may be
natural. Understanding the baseline occurrence of intersex in black
basses will help to interpret these observations and determine
the utility of this condition as an indicator of endocrine disruption
in bass.

We present the observed occurrence of intersex in a variety of
freshwater fish species in the United States but not information
on the potential causes. The causes for intersex may vary by loca-
tion; therefore, one anthropogenic activity or class of contaminants
will not explain the occurrence of intersex in all species or loca-
tions. Each site was sampled once in our study, so it is unknown
whether the intersex occurrence has become more severe at sites
where the condition was observed. If the condition is related to
EACs, increased intersex occurrence may be expected as indus-
trial and municipals waste discharges increase. Studies to evaluate
the severity of intersex and potential local stressors are recom-
mended for sites where the majority of male bass were found to be
intersex. In addition, future studies should determine why inter-
sex is more prevalent in certain species; the mechanisms through
which intersex is induced in fish; whether intersex has a hierarchi-
cal linkage to endocrine function; and whether certain compounds
(estrogens, anti-estrogens, androgens, and anti-androgens) in the
environment increase the severity of intersex in fish. Ultimately,
we also need to know if individuals with the intersex condition
relate to reduced reproductive output for a given populations. A
better understanding of these questions is required if we are to
truly understand the significance and the cause of intersex in wild
fish populations. Results from our study provide fundamental infor-
mation on the occurrence and distribution of intersex in freshwater
fishes throughout the United States that will be necessary to begin
to address these questions.

4.3. Sampling design limitations for defining background
occurrence of intersex

Intersex has been reported in freshwater and marine fishes for
decades (Sumpter, 2002), but in studies prior to 1980, it was typ-
ically observed macroscopically in one or two fish at a site (e.g.
James, 1946; Sikstrom et al., 1975). As concerns about EACs in
aquatic ecosystems have increased, recent studies have included
microscopic examination of the gonads for intersex. Consequently,
the condition has been reported with greater frequency. In our
study, gonadal tissues were collected for histological examina-
tion primarily to document stage of reproductive development

and percent of atretic oocytes. However, all other abnormalities,
including intersex, were noted. Remarkably, intersex was detected
despite relatively small sample sizes at some sites (e.g. 2 of 3
male bass in Columbia R. at Warrendale, Oregon), which may
indicate an even greater prevalence of intersex in the popula-
tion at certain locations. Our sampling methodology did not allow
us to determine the true prevalence or severity of intersex in
the fish species collected and is therefore not adequate to esti-
mate or quantify a baseline occurrence in these species. The true
occurrence of intersex in our samples and these populations of
fishes are probably underestimated. Nevertheless, and as noted
by Devlin and Nagahama (2002), field studies that examine gonad
developmental stage or sex ratio provide an unbiased minimum
approximation for the spontaneous frequency of intersex in wild
populations.

We positively identified a fish as intersex when a mixture of
oocytes and sperm was observed histologically within the gonadal
tissue. However, the lack of evidence of oocytes within the tes-
ticular sections (or spermatocytes within the ovarian sections)
examined does not preclude the possibility of intersex in other sec-
tions or elsewhere in the gonad. Blazer et al. (2007) estimated that
examining five transverse sections taken along the length of each
testis would allow greater than 90% detection of intersex in small-
mouth bass. The low occurrence of intersex in common carp may
be influenced by the large gonad size of this species; the propor-
tion of tissue examined microscopically is much smaller for carp,
which decreases the likelihood of finding the condition with our
sampling protocol. We observed that testicular oocyte density was
greatest in the center of a transverse section near blood vessels and
nerves of both smallmouth and largemouth bass testes. The inter-
sex condition may be underestimated in species with larger gonads
if the central region is not collected; however, the optimal loca-
tion for estimating intersex occurrence may vary by fish species.
For black basses, we recommend examining five to ten trans-
verse sections (based on the size of the gonad), sampled along the
entire length of each gonadal lobe, to determine the occurrence of
intersex.

Our sampling design precluded rigorous statistical testing of
associations between the intersex condition and chemical con-
taminants because contaminant concentrations were measured
in whole-body composite samples comprising multiple individ-
uals. Changes in analytical limits of detection for contaminants
also restricted the interpretation of these data; limits of detection
decreased by two orders of magnitude for some organochlorine
pesticides (e.g. 1995 vs 2004 samples) (Hinck et al., 2008b). As
a result, our finding of the greatest number of detected con-
taminants at the same locations as the greatest occurrence of
intersex (i.e. southeastern United States) may not reflect the actual
associations between these endpoints. The mere detection of a
chemical contaminant also does not imply causation of intersex.
Nevertheless, the most commonly detected contaminants (total
mercury, p,p′-DDE, and PCBs) have all been identified as EACs
that are associated with reproductive impairment in fish, albeit
not necessarily at the concentrations measured in our samples
(Drevnick and Sandheinrich, 2003; Garcia-Reyero et al., 2006).
Our results also highlight that contaminants tend to co-occur in
fish. Other more contemporary pesticides that do not bioaccumu-
late and which we did not measure are also likely to be present
at these sites because of their current use on row crops and in
urban landscapes (e.g. Gillom et al., 2006). For example, numer-
ous herbicides, insecticides, and fungicides are applied to crops
in the southeastern United States, and application rates are gen-
erally greater in the Apalachicola, Savannah, and Pee Dee River
Basins than the Mobile River Basin (U.S. Geological Survey, 2003).
It is unknown if these higher pesticide application rates are asso-
ciated with the greater incidences of intersex we observed in
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fish from these basins. We also did not measure other chemical
groups such as surfactants, personal care products, and pharma-
ceuticals that have the potential to cause endocrine disruption
in fish.

4.4. Conclusions

The occurrence of intersex differed among species collected
from large U.S. rivers. Largemouth and smallmouth bass would be
good candidates for monitoring changes in and severity of intersex
in waters of the United States because of their broad distribu-
tion and apparent sensitivity or susceptibility to this condition.
Intersex was likely underestimated in the species examined given
our sample sizes and small percent of gonad tissue examined per
fish. Despite these study design limitations, this work is significant
in that it is the first to document the widespread occurrence of
intersex in black basses in the United States. Intersex was widely
observed in male largemouth bass (18% of all individuals; 44% of
sites) and smallmouth bass (33% of all individuals; 44% of sites)
and was found in most of the largemouth bass we examined from
the southeastern United States. Intersex occurrence in largemouth
and smallmouth bass was not correlated with differences in repro-
ductive endpoints such as gonad size, vitellogenin concentrations,
or sex steroid hormone concentrations. Intersex in fish did not
appear to be limited to locations with suspected sources of EACs.
Therefore, the intersex condition in black basses may not be the
result of exposure to xenoestrogens; we simply need to know
more about the factors (hormonal and environmental) which con-
tribute to this condition in fish. We know EACs can cause intersex
in fish, but we lack information on species sensitivities, patholog-
ical mechanisms, and the importance of environmental factors.,
Further studies should determine the mechanisms responsible for
and environmental factors contributing to intersex in these species
and the implications of this condition for fish populations. Recom-
mendations for designing future monitoring studies would include
considering black bass as the target species, obtaining fish of vary-
ing ages, collecting fish during different stages of reproductive
development and over multiple years, using a severity index for
intersex occurrence, and measuring EACs in the water. Our study
highlights sites where intersex was more common and may be of
concern for certain species. The cause or causes for the widespread
occurrence of intersex in largemouth bass from the southeastern
United States and elsewhere remains unknown and warrants fur-
ther investigation. Proper diagnosis of this condition in feral fish
is important because if the primary causes are EACs, then the
widespread occurrence of intersex in fish would be a critical envi-
ronmental concern.

Acknowledgements

This study was managed under the Status and Trends of Bio-
logical Resources Program of the U.S Geological Survey. We thank
K. Chojnacki for providing the map and K. Spring and D. Bowling
for preparation of the histologic slides. We also thank the numer-
ous people who participated in the field and laboratory portions
of the original investigations. A. Maule, R. Patiño, and two anony-
mous reviewers provided insightful comments on earlier versions
of this paper. Any use of trade, product, or firm names is for descrip-
tive purposes only and does not imply endorsement by the U.S.
Government.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.aquatox.2009.08.001.

References

Anderson, M.J., Cacela, D., Beltman, D., Teh, S.J., Okihiro, M.S., Hinton, D.E., Denslow,
N., Zelikoff, J.T., 2003. Biochemical and toxicopathic biomarkers assessed in
smallmouth bass recovered from a polychlorinated biphenyl-contaminated
river. Biomarkers 8, 317–393.

Allen, Y., Mattheiessen, P., Scott, A.P., Haworth, S., Feist, S., Thain, J.E., 1999.
The extent of oestrogenic contamination in the UK estuarine and marine
environments—further surveys of flounder. Sci. Total Environ. 233, 5–20.

Ankley, G.T., Tillitt, D.E., Giesy, J.P., Jones, P.D., Verbrugge, D.A., 1991. Bioas-
say derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents in PCB containing
extracts from the flesh and eggs of Lake Michigan chinook salmon (Oncorhynchus
tshawytscha) and possible implications for reproduction. Can. J. Fish. Aquat. Sci.
48, 1685–1690.

Baldigo, B.P., Sloan, R.J., Smith, S.B., Denslow, N.D., Blazer, V.S., Gross, T.S., 2006.
Polychlorinated biphenyls, mercury, and potential endocrine disruption in fish
from the Hudson River, New York, USA. Aquat. Sci. 68, 206–228.

Bateman, K.S., Stentiford, G.D., Feist, S.W., 2004. A ranking system for the evaluation
of intersex condition in European flounder (Platichthys flesus). Environ. Toxicol.
Chem. 23, 2831–2836.

Bjerregaard, L.B., Korsgaard, B., Bjerregaard, P., 2006. Intersex in wild roach (Rutilus
rutilus) from a Danish sewage effluent-receiving streams. Ecotox. Environ. Saf.
64, 321–328.

Blazer, V.S., 2002. Histopathological assessment of gonadal tissue in wild fishes. Fish
Physiol. Biochem. 26, 85–101.

Blazer, V.A., Iwanowicz, L.R., Iwanowicz, D.D., Smith, D.R., Young, J.A., Hedrick, J.D.,
Foster, S.W., Reeser, S.J., 2007. Intersex (testicular oocytes) in smallmouth bass
from the Potomac River and selected nearby drainages. J. Aquat. Animal Health
19, 242–253.

Cooper, R.L., Kavlock, R.J., 1997. Endocrine disruptors and reproductive develop-
ment: a weight-of-evidence overview. J. Endocrin. 152, 159–166.

Denslow, N.D., Chow, M.C., Kroll, K.J., Green, L., 1999. Vitellogenin as a biomarker of
exposure for estrogen or estrogen mimics. Ecotoxicology 8, 385–398.

Devlin, R.H., Nagahama, Y., 2002. Sex determination and sex differentiation in fish:
an overview of genetic, physiological, and environmental influences. Aquacul-
ture 208, 191–364.

Drevnick, P.E., Sandheinrich, M.B., 2003. Effects of dietary methylmercury on
reproductive endocrinology of fathead minnows. Environ. Sci. Technol. 37,
4390–4396.

Garcia-Reyero, N., Barber, D.S., Gross, T.S., Johnson, K.G., Sepúlveda, M.S., Szabo, N.J.,
et al., 2006. Dietary exposure of largemouth bass to OCPs changes expression of
genes important for reproduction. Aquat. Toxicol. 78, 358–369.

Gercken, J., Sordyl, H., 2002. Intersex in feral marine and freshwater fish from north-
eastern Germany. Mar. Environ. Res. 54, 651–655.

Gillom, R.J., Barbash, J.E., Crawford, C.G., Hamilton, P.A., Martin, J.D., Nakagaki, N.,
Nowell, L.H., Scott, J.C., Stackelberg, P.E., Thelin, G.A., Wolock, D.M., 2006. The
Quality of our Nation’s Waters-Pesticides in the Nation’s Streams and Ground
Water 1992–2001. U.S. Geological Survey Circular 1291, p. 172.

Gray, M., Niimi, A.J., Metcalfe, C.D., 1999. Factors affecting the development of testis-
ova in medaka, Oryzias latipes, exposed to octylphenol. Environ. Toxicol. Chem.
18, 1835–1842.

Hanselman, T.A., Graetz, D.A., Wilkie, A.C., 2003. Manure-borne estrogens as
potential environmental contaminants: a review. Environ. Sci. Technol. 37,
5471–5478.

Hecker, M., Tyler, C.R., Hoffmann, M., Maddix, S., Karbe, L., 2002. Plasma biomarkers
in fish provide evidence for endocrine modulation in the Elbe River, Germany.
Environ. Sci. Technol. 36, 2311–2321.

Hecker, M., Murphy, M.B., Coady, K.K., Villeneuve, D.L., Jones, P.D., Carr, J.A., Solomon,
K.R., Smith, E.E., van der Kraak, G., Gross, T., Du Preez, L., Kendall, R.J., Giesy, J.P.,
2006. Terminology of gonadal anomalies in fish and amphibian resulting from
chemical exposures. Rev. Environ. Contam. Toxicol. 187, 103–131.

Hegrenes, S.G., 1999. Masculinization of spawning channel catfish in the Red River
of the North. Copeia 2, 491–494.

Hinck, J.E., Schmitt, C.J., Blazer, V.S., Denslow, N.D., Bartish, T.M., Anderson, P.J.,
Coyle, J.J., Dethloff, G.M., Tillitt, D.E., 2006. Environmental contaminants and
biomarker responses in fish from the Columbia River and its tributaries: spatial
and temporal trends. Sci. Total Environ. 366, 549–578.

Hinck, J.E., Blazer, V.S., Denslow, N.D., Myers, M.S., Gross, T.S., Tillitt, D.E.,
2007a. Biomarkers of contaminant exposure in northern pike (Esox lucius)
from the Yukon River Basin, Alaska. Arch. Environ. Contam. Toxicol. 52,
529–562.

Hinck, J.E., Blazer, V.S., Denslow, N.D., Echols, K.R., Gross, T.S., May, T.W., Ander-
son, P.J., Coyle, J.J., Tillitt, D.E., 2007b. Chemical contaminants, health indicators,
and reproductive biomarker responses in fish from the Colorado River and its
tributaries. Sci. Total Environ. 378, 376–402.

Hinck, J.E., Blazer, V.S., Denslow, N.D., Echols, K.R., Gale, R.W., Wieser, C., May, T.W.,
Ellersieck, M.R., Coyle, J.J., Tillitt, D.E., 2008a. Chemical contaminants, health
indicators, and reproductive biomarker responses in fish from rivers in the
Southeastern U.S. Sci. Total Environ. 390, 538–557.

Hinck, J.E., Schmitt, C.J., Ellersieck, M.R., Tillitt, D.E., 2008b. Relations between
and among contaminant concentrations and biological endpoints in bass
(Micropterus spp.) and common carp (Cyprinus carpio) in large U.S. rivers,
1995–2004. J. Environ. Monit. 10, 1499–1518.

James, M.F., 1946. Hermaphroditism in the largemouth bass. J. Morph. 79, 93–96.
Jobling, S., Nolan, M., Tyler, C.R., Brighty, G., Sumpter, J.P., 1998. Widespread sexual

disruption in wild fish. Environ. Sci. Technol. 32, 2498–2506.

http://dx.doi.org/10.1016/j.aquatox.2009.08.001


70 J.E. Hinck et al. / Aquatic Toxicology 95 (2009) 60–70

Jobling, S., Coey, S., Whitmore, J.G., Kime, D.E., Van Look, K.J.W., McAllister,
B.G., Beresford, N., Henshaw, A.C., Brighty, G., Tyler, C.R., Sumpter, J.P., 2002.
Wild intersex roach (Rutilus rutilus) have reduced fertility. Bio. Reprod. 67,
515–524.

Johnston, P.M., 1951. The embryonic history of the germ cells of the largemouth
black bass, Micropterus salmoides salmoides (Lacepede). J. Morphol. 88, 471–542.

June, F.C., 1977. Reproductive patterns in seventeen species of warmwater fishes in
a Missouri River reservoir. Environ. Biol. Fish. 2, 285–296.

Kime, D.E., 1999. A strategy for assessing the effects of xenobiotics on fish reproduc-
tion. Sci. Total Environ. 225, 3–11.

Koger, C.S., Teh, S.J., Hinton, D.E., 2000. Determining the sensitive stages of intersex
induction in medaka (Oryzias latipes) exposed to 17 b-estradiol or testosterone.
Mar. Environ. Res. 50, 201–206.

Kolodiei, E.P., Sedlak, D.L., 2007. Rangeland grazing as a source of steroid hormones
to surface waters. Environ. Sci. Technol. 41, 3514–3520.

Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B.,
Buxton, H.T., 2002. Pharmaceuticals, hormones, and other organic wastewater
contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ.
Sci. Technol. 36, 1202–1211.

Körner, O., Vermeirssen, E.L.M., Holm-Burkhardt, P., 2005. Intersex in feral brown
trout from Swiss midland rivers. J. Fish Biol. 67, 1734–1740.

Krisfalusi, M., Nagler, J.J., 2000. Induction of intersex in genotypic male rainbow
trout (Oncorhynchus mykiss) embryos following immersion in estradiol-17b.
Molecular Reprod. Develop. 56, 495–501.

Lavado, R., Thibaut, R., Raldua, D., Martin, R., Porte, C., 2004. First evidence of
endocrine disruption in feral carp from the Ebro River. Toxicol. Appl. Pharmacol.
196, 247–257.

Liney, K.E., Jobling, S., Shears, J.A., Simpson, P., Tyler, C.R., 2005. Assessing the sen-
sitivity of different life stages for sexual disruption in roach (Rutilus rutilus)
exposed to effluents from wastewater treatment works. Environ. Health Per-
spect. 113, 1299–1307.

Lorenzen, A., Kennedy, S.W., 1993. A fluorescence-based protein assay for use with
a microplate reader. Anal. Biochem. 214, 346–348.

Luna, L.G., 1992. Histopathological Methods and Color Atlas of Special Stains and
Tissue Artifacts. American Histolabs, Inc., Gaithersburg, MD.

McDaniel, T.V., Martin, P.A., Struger, J., Sherry, J., Marvin, C.H., McMaster, M.E.,
Clarence, S., Tetreault, G., 2008. Potential endocrine disruption of sexual devel-
opment in free ranging male northern leopard frogs (Rana pipiens) and green
frigs (Rana clamitans) from areas of intensive row crop agriculture. Aquat. Tox-
icol. 88, 230–242.

Mills, L.J., Chichester, C., 2005. Review of evidence: are endocrine-disrupting chem-
icals in the aquatic environment impacting fish populations? Sci. Total Environ.
343, 1–34.

Minier, C., Caltot, G., Leboulanger, R., Hill, E.M., 2000. An investigation of the
incidence of intersex fish in Seine-Maritime and Sussex regions. Analusis 28,
801–806.

Moser, M., Whipple, J., Sakanari, J., Reilly, C., 1983. Protandrous hermaphroditism in
striped bass from Coos Bay, Oregon. Trans. Am. Fish. Soc. 112, 567–569.

Nash, J.P., Kime, D.E., Van der Van, L.T.M., Wester, P.W., Brion, F., Maack, G.,
Stahlschmidt-Allner, P., Tyler, C.R., 2004. Long-term exposure to environmen-
tal concentrations of the pharmaceutical ethynylestradiol causes reproductive
failure in fish. Environ. Health Perspect. 112, 1725–1733.

Nolan, M., Jobling, S., Brighty, G., Sumpter, J.P., Tyler, C.R., 2001. A histological
description of intersexuality in the roach. J. Fish Biol. 58, 160–176.

O’Farrell, M.M., Peirce, R.E., 1989. The occurrence of a gynandromorphic migratory
trout, Salmo trutta L. J. Fish Biol. 34, 327.

Orlando, E.E., Kolok, A.S., Binzcik, G.A., Gate, J.L., Horton, M.K., Lambright, C.S., Gray
Jr., L.E., Soto, A.M., Guillette Jr., J.L., 2004. Endocrine-disrupting effects of cattle
feedlot effluent on an aquatic sentinel species, the fathead minnow. Environ.
Health Perspect. 112, 353–358.

Orlando, E.F., Guillette Jr., J.L., 2007. Sexual dimorphic responses in wildlife exposed
to endocrine disrupting compounds. Environ. Res. 104, 163–173.

Piferrer, F., 2001. Endocrine sex control strategies for the feminization of teleosts
fish. Aquaculture 197, 229–281.

Saville, D.J., 1990. Multiple comparison procedures: the practical solution. Am.
Statist. 44, 174–180.

Schmid, T., Gonzalez-Valero, J., Rufli, H., Dietrich, D.R., 2002. Determination of vitel-
logenin kinetics in male fathead minnows (Pimephales promelas). Tox. Lett. 131,
65–74.

Schmitt, C.J., 2002. Biomonitoring of Environmental Status and Trends (BEST) Pro-
gram: environmental contaminants and their effects on fish in the Mississippi
River Basin. U.S. Geological Survey Biological Science Report USGS/BRD/BSR
2002–2004, Columbia, MO, 217p.

Schmitt, C.J., Hinck, J.E., Blazer, V.S., Denslow, N.D., Dethloff, G.M., Bartish, T.M., Coyle,
J.J., Tillitt, D.E., 2005. Environmental contaminants and biomarker responses in
fish from the Rio Grande and its U.S. tributaries: spatial and temporal trends.
Sci. Total Environ. 250, 161–193.

Sikstrom, C.B., Metner, D.A., Lockhart, W.L., 1975. Hermaphroditism in a white sucker
(Catostomus commersoni) from the Athabasca River, Alberta. Trans. Am. Fish. Soc.
104, 413.

Snyder, E.M., Snyder, S.A., Kelly, K.L., Gross, T.S., Villeneuve, D.L., Fitzgerald, S.D., Vil-
lalobos, S.A., Giesy, J.P., 2004. Reproductive responses of common carp (Cyprinus
carpio) exposed in cages to influent of the Las Vegas Wash in Lake Mead, Nevada,
from late winter to early spring. Environ. Sci. Technol. 38, 6385–6395.

Solé, M., Raldua, D., Pifferrer, F., Barceló, D., Porte, C., 2003. Feminization of wild carp,
Cyprinus carpio, in a polluted environment: plasma steroid hormones, gonadal
morphology and xenobiotic metabolizing system. Comp. Biochem. Physiol. C
136, 145–156.

Stentiford, G.D., Longshaw, M., Lyons, B.P., Jones, G., Green, M., Feist, S.W., 2003.
Histopathological biomarkers in estuarine fish species for the assessment of
biological effects of contaminants. Mar. Environ. Res. 55, 137–159.

Stuber, R.J., Gebhart, G., Maughan, O.E., 1982. Habitat suitability index models: large-
mouth bass. U.S. Department of the Interior. FWS/OBS-82/10.16. 32 p.

Sumpter, J.P., 2002. Endocrine disruption in the aquatic environment. In: Metzler,
M. (Ed.), The Handbook of Environmental Chemistry, vol. 3 Part M Endocrine
Disruptors, Part II. Springer-Verlag, Berlin, Heidelberg, pp. 271–289.

Sumpter, J.P., Jobling, S., 1995. Vitellogenesis as a biomarker for estrogenic contami-
nation of the aquatic environment. Environ. Health Perspect. 103 (S7), 173–178.

Thorpe, K.L., Benstead, R., Hutchinson, T.H., Tyler, C.R., 2007. Associations between
altered vitellogenin concentrations and adverse health effects in fathead min-
now (Pimephales promelas). Aquat. Toxicol. 85, 176–183.

U.S. Geological Survey, 2003. NAWQA Pesticide National Synthesis Project, Sacra-
mento, California, at URL http://ca.water.usgs.gov/pnsp/.

Vajda, A.M., Barber, L.B., Gray, J.L., Lopez, E.M., Woodling, J.D., Norris, D.O., 2008.
Reproductive disruption in fish downstream form an estrogenic wastewater
effluent. Environ. Sci. Technol. 42, 3407–3414.

van Aerle, R., Nolan, M., Jobling, S., Christiansen, L.B., Sumpter, J.P., Tyler, C.R., 2001.
Sexual disruption in a second species of wild cyprinid fish (the gudgeon, Gobio
gobio) in United Kingdom freshwaters. Environ. Toxicol. Chem. 20, 2841–2847.

Vethaak, A.D., Lahr, J., Kuiper, R.V., Grinwis, G.C.M., Rankouhi, T.R., Giesy, J.P., Ger-
ritsen, A., 2002. Estrogenic effects in fish in The Netherlands: some preliminary
results. Toxicol. 181–182, 147–150.

Vine, E., Shears, J., van Aerle, R., Tyler, C.R., Sumpter, J.P., 2005. Endocrine (sexual)
disruption is not a prominent feature in the pike (Esox lucius), a top predator,
living in English waters. Environ. Toxicol. Chem. 24, 1436–1443.

Whyte, J.J., Jung, R.E., Schmitt, C.J., Tillitt, D.E., 2000. Ethoxyresorufin-O deethylase
(EROD) activity in fish as a biomarker of chemical exposure. Crit. Rev. Toxicol.
30, 347–570.

Whyte, J.J., Schmitt, C.J., Tillitt, D.E., 2004. The H4IIE cell bioassay as an indicator
of dioxin-like chemicals in wildlife and the environment. Crit. Rev. Toxicol. 34,
1–83.

Woodling, J.D., Lopez, E.M., Maldonado, T.A., Norris, D.O., Vajda, A.M., 2006. Inter-
sex and other reproductive disruption of fish in wastewater effluent dominated
Colorado streams. Comp. Biochem. Physiol. C 144, 10–15.

Zillioux, E.J., Johnson, I.C., Kiparissis, Y., Metcalfe, C.D., Wheat, J.V., Ward, S.G., Liu,
H., 2001. The sheepshead minnow as an in vivo model for endocrine disruption
in marine teleosts: a partial life-cycle test with 17-ethynylestradiol. Environ.
Toxicol. Chem. 20, 1968–1978.

http://ca.water.usgs.gov/pnsp/

	Widespread occurrence of intersex in black basses (Micropterus spp.) from U.S. rivers, 1995–2004
	

	Widespread occurrence of intersex in black basses (Micropterus spp.) from U.S. rivers, 1995-2004
	Introduction
	Methods
	Sampling and field procedures
	Laboratory analyses
	Statistical analyses

	Results
	Occurrence of intersex fish
	Trends among intersex fish by basin
	Associations between intersex bass and contaminant concentrations

	Discussion
	Prevalence of intersex in freshwater fish
	Factors to consider when evaluating intersex occurrence
	Sampling design limitations for defining background occurrence of intersex
	Conclusions

	Acknowledgements
	Supplementary data
	References


	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


