132 research outputs found

    Modeling approach to regime shifts of primary production in shallow coastal ecosystems

    Full text link
    Pristine coastal shallow systems are usually dominated by extensive meadows of seagrass species, which are assumed to take advantage of nutrient supply from sediment. An increasing nutrient input is thought to favour phytoplankton, epiphytic microalgae, as well as opportunistic ephemeral macroalgae that coexist with seagrasses. The primary cause of shifts and succession in the macrophyte community is the increase of nutrient load to water; however temperature plays also an important role. A competition model between rooted seagrass (Zostera marina), macroalgae (Ulva sp), and phytoplankton has been developed to analyse the succession of primary producer communities in these systems. Successions of dominance states, with different resilience characteristics, are found when modifying the input of nutrients and the seasonal temperature and light intensity forcing.Comment: 33 pages, including 10 figures. To appear in Ecological Complexit

    Algal biomass and macroinvertebrate dynamics in intermittent braided rivers: new perspectives from instream pools

    Get PDF
    Perennial streams and rivers are now largely subjected to fragmentation and lentification processes due to flow reduction, which creates a number of lateral habitats with different degrees of hydrological connectivity. These habitats have environmental conditions and biotic interactions that can be far divergent than those of main channel habitats. However, they remain largely unexplored, especially in temperate regions. We here focused on studying algal dynamics and their interactions with aquatic invertebrates across mesohabitats (i.e., main channel, secondary channel, pools) in streambeds under both normal and low flow conditions. We selected four watercourses in the Po Plain (northern Italy), where we detected the main dynamics and drivers of algal and invertebrate communities by applying mixed effect modelling. A clear algal growth trend was detected in summer, and was similar for all mesohabitats, but with temporal decoupling and doubled values in pools. Mesohabitat and time were central factors in driving benthic algae dynamics that, in turn, negatively affected aquatic invertebrates. Hydrology and algae seemed to have a mutually reinforcing effect on macroinvertebrates by reducing almost all the investigated metrics. By considering future projections on further regime shifts in lotic systems, loss of biodiversity driven by algal blooms could become a major concern, and also for potential cascade impacts on other biotic compartments of river networks

    Tracing groundwater circulation in a valuable mineral water basin with geochemical and isotopic tools: the case of FERRARELLE, Riardo basin, Southern Italy

    Get PDF
    The Riardo basin hosts groundwater exploited for the production of high quality, naturally sparkling, bottled water (e.g., Ferrarelle water), and circulating in a system constituted by highly fractured Mesozoic carbonates, overlain by more impervious volcanic rocks of the Roccamonfina complex. The two formations are locally in hydraulic connection and dislocated by deep-rooted faults. The study aimed at elucidating groundwater origin and circulation, using isotopic tracers (δ18O, δ2H, δ11B and 87Sr/86Sr) coupled to groundwater dating (Tritium, CFCs and SF6). Besides recharge by local precipitation over the Riardo hydrogeological basin, stable isotope ratios in water indicated an extra-basin recharge, likely from the elevated surrounding carbonate reliefs (e.g., Maggiore and Matese Mts.). The mineralization process, promoted by the deep CO2 flux, controls the B and Sr contents. However, their isotopic ratios did not allow discriminating between circulation in the volcanic and in the carbonate aquifers, as in the latter the isotopic composition differed from the original marine signature. Groundwater model ages ranged from ~ 30 years for the volcanic endmember to > 70 years for the deep, mineralized end-member, with longer circuits recharged at higher elevations. Overall, the results of this study were particularly relevant for mineral water exploitation. A recharge from outside the hydrogeological basin could be evidenced, especially for the more mineralized and valuable groundwater, and an active recent recharge was detected for the whole Riardo system. Both findings will contribute to the refinement of the hydrogeological model and water budget, and to a sustainable development of the resource

    Sedimentary organic matter, prokaryotes, and meiofauna across a river-lagoon-sea gradient

    Get PDF
    In benthic ecosystems, organic matter (OM), prokaryotes, and meiofauna represent a functional bottleneck in the energy transfer towards higher trophic levels and all respond to a variety of natural and anthropogenic disturbances. The relationships between OM and the different components of benthic communities are influenced by multiple environmental variables, which can vary across different habitats. However, analyses of these relationships have mostly been conducted by considering the different habitats separately, even though freshwater, transitional, and marine ecosystems, physically linked to each other, are not worlds apart. Here, we investigated the quantity and nutritional quality of sedimentary OM, along with the prokaryotic and meiofauna abundance, biomass, and biodiversity, in two sampling periods, corresponding to high vs. low freshwater inputs to the sea, along a river-to-sea transect. The highest values of sedimentary organic loads and their nutritional quality, prokaryotic and meiofaunal abundance, and biomass were consistently observed in lagoon systems. Differences in the prokaryotic Operational Taxonomic Units (OTUs) and meiofaunal taxonomic composition, rather than changes in the richness of taxa, were observed among the three habitats and, in each habitat, between sampling periods. Such differences were driven by either physical or trophic variables, though with differences between seasons. Overall, our results indicate that the apparent positive relationship between sedimentary OM, prokaryote and meiofaunal abundance, and biomass across the river-lagoon-sea transect under scrutiny is more the result of a pattern of specifically adapted prokaryotic and meiofaunal communities to different habitats, rather than an actually positive 'response' to OM enrichment. We conclude that the synoptic analysis of prokaryotes and meiofauna can provide useful information on the relative effect of organic enrichment and environmental settings across gradients of environmental continuums, including rivers, lagoons, and marine coastal ecosystems

    Nitrogen balance and fate in a heavily impacted watershed (Oglio River, Northern Italy): in quest of the missing sources and sinks

    Get PDF
    We present data from a comprehensive investigation carried out from 2007 to 2010, focussing on nitrogen pollution in the Oglio River basin (3800 km<sup>2</sup>, Po Plain, Northern Italy). Nitrogen mass balances, computed for the whole basin with 2000 and 2008 data, suggest a large N surplus in this area, over 40 000 t N yr<sup>−1</sup>, and increasing between 2000 and 2008. Calculations indicate a very large impact of animal husbandry and agricultural activities in this watershed, with livestock manure and synthetic fertilizers contributing 85% of total N inputs (about 100 000 t N yr<sup>−1</sup>) and largely exceeding crop uptake and other N losses (about 60 000 t N yr<sup>−1</sup>). Nitrogen from domestic and industrial origin is estimated as about 5800 and 7200 t N yr<sup>−1</sup>, respectively, although these loads are overestimated, as denitrification in treatment plants is not considered; nonetheless, they represent a minor term of the N budget. Annual export of nitrogen from the basin, calculated from flow data and water chemistry at the mouth of the Oglio River, is estimated at 13 000 t N yr<sup>−1</sup>, and represents a relatively small fraction of N inputs and surplus (&sim;12% and 34%, respectively). After considering N sinks in crop uptake, soil denitrification and volatilization, a large excess remains unaccounted (&sim;26 000 t N yr<sup>−1</sup>) in unknown temporary or permanent N sinks. Nitrogen removal via denitrification was evaluated in the Oglio riverbed with stable isotope techniques (&delta;<sup>15</sup>N and &delta;<sup>18</sup>O in nitrate). The downstream final segment of the river displays an enriched nitrate stable isotope composition but calculations suggest a N removal corresponding to at most 20% of the unaccounted for N amount. Denitrification was also evaluated in riverine wetlands with the isotope pairing technique. Areal rates are elevated but overall N removal is low (about 1% of the missing N amount), due to small wetland surfaces and limited lateral connectivity. The secondary drainage channel network has a much higher potential for nitrogen removal via denitrification, due to its great linear development, estimated in over 12 500 km, and its capillary distribution in the watershed. In particular, we estimated a maximum N loss up to 8500 t N yr<sup>−1</sup>, which represents up to 33% of the unaccounted for N amount in the basin. Overall, denitrification in surface aquatic habitats within this basin can be responsible for the permanent removal of about 12 000 t N yr<sup>−1</sup>; but the fate of some 14 000 t remains unknown. Available data on nitrate concentration in wells suggest that in the central part of the watershed groundwater accumulates nitrogen. Simultaneously, we provide evidences that part of the stored nitrate can be substantially recycled via springs and can pollute surface waters via river-groundwater interactions. This probably explains the ten fold increase of nitrate concentration in a reach of the Oglio River where no point pollutions sources are present

    Nitrogen balance and fate in a heavily impacted watershed (Oglio River, Northern Italy): in quest of the missing sources and sinks

    Get PDF
    Abstract. We present data from a comprehensive investigation carried out from 2007 to 2010, focussing on nitrogen pollution in the Oglio River basin (3800 km2, Po Plain, Northern Italy). Nitrogen mass balances, computed for the whole basin with 2000 and 2008 data, suggest a large N surplus in this area, over 40 000 t N yr−1, and increasing between 2000 and 2008. Calculations indicate a very large impact of animal husbandry and agricultural activities in this watershed, with livestock manure and synthetic fertilizers contributing 85% of total N inputs (about 100 000 t N yr−1) and largely exceeding crop uptake and other N losses (about 60 000 t N yr−1). Nitrogen from domestic and industrial origin is estimated as about 5800 and 7200 t N yr−1, respectively, although these loads are overestimated, as denitrification in treatment plants is not considered; nonetheless, they represent a minor term of the N budget. Annual export of nitrogen from the basin, calculated from flow data and water chemistry at the mouth of the Oglio River, is estimated at 13 000 t N yr−1, and represents a relatively small fraction of N inputs and surplus (∼12% and 34%, respectively). After considering N sinks in crop uptake, soil denitrification and volatilization, a large excess remains unaccounted (∼26 000 t N yr−1) in unknown temporary or permanent N sinks. Nitrogen removal via denitrification was evaluated in the Oglio riverbed with stable isotope techniques (δ15N and δ18O in nitrate). The downstream final segment of the river displays an enriched nitrate stable isotope composition but calculations suggest a N removal corresponding to at most 20% of the unaccounted for N amount. Denitrification was also evaluated in riverine wetlands with the isotope pairing technique. Areal rates are elevated but overall N removal is low (about 1% of the missing N amount), due to small wetland surfaces and limited lateral connectivity. The secondary drainage channel network has a much higher potential for nitrogen removal via denitrification, due to its great linear development, estimated in over 12 500 km, and its capillary distribution in the watershed. In particular, we estimated a maximum N loss up to 8500 t N yr−1, which represents up to 33% of the unaccounted for N amount in the basin. Overall, denitrification in surface aquatic habitats within this basin can be responsible for the permanent removal of about 12 000 t N yr−1; but the fate of some 14 000 t remains unknown. Available data on nitrate concentration in wells suggest that in the central part of the watershed groundwater accumulates nitrogen. Simultaneously, we provide evidences that part of the stored nitrate can be substantially recycled via springs and can pollute surface waters via river-groundwater interactions. This probably explains the ten fold increase of nitrate concentration in a reach of the Oglio River where no point pollutions sources are present

    Obstructive Hydrocephalus in Newborn Due to Cerebral Atrium Diverticulum Formation: Complete Resolution After Subdural Hematoma Evacuation.

    Get PDF
    Cerebral atrium diverticula are focal enlargements of the ventricular system that may develop in the presence of persistent intracranial hypertension, but they are rarely described in cases of acute intracranial hypertension. Here we present a unique case of obstructive hydrocephalus in a newborn due to the formation of a cerebral atrium diverticulum compressing the ventricular system. A preterm 38-week-old boy was born with urgent caesarian section due to severe hydrocephalus. Magnetic resonance imaging showed the presence of a subacute right subdural hematoma with secondary obstructive hydrocephalus. The cystic lesion was characterized as a right ventricular atrium diverticulum. The child underwent urgent burr-hole evacuation of the right subdural hematoma with complete regression of the obstructive hydrocephalus and right atrial diverticulum. Cerebral atrium diverticula are rare focal dilatations of the ventricular system, and their radiologic diagnosis may be challenging. Accurate diagnosis of atrial diverticula and understanding of the underlying physiopathology is mandatory to establish the appropriate operative strategy

    Taxonomic and functional responses of benthic macroinvertebrate communities to hydrological and water quality variations in a heavily regulated river

    Get PDF
    Aquatic macroinvertebrates are frequently used to evaluate river system conditions and restoration project performance. A better understanding of macroinvertebrate community responses to multiple stressors is a primary challenge for river science. In this paper, macroinvertebrate responses to hydrological and water quality variability were studied in the regulated Oglio River (northern Italy). We hypothesized that in regulated rivers the hydrological, rather than the physico-chemical conditions, would affect macroinvertebrate communities and biomonitoring tools (taxonomic metrics and functional indices). Repeated sampling (six times a year) was performed at four sites downstream of four dams in a 30 km river stretch during 2014 and 2015. Data were analysed using a linear mixed effect framework, to take into account random variation due to site and sampling date, and with multivariate analysis to track changes in community structure. A total of 69 families and 134,693 organisms were identified. The investigated metrics were mainly affected by the coefficient of variation of discharge, minimum discharge, ammonium, and temperature. The short-term dynamics of hydrological and physico-chemical variables were generally less important than the overall random effects as drivers of macroinvertebrate-based metrics. However, the relevance of a random effect (site, time, their interaction) differed depending on the biological metrics analysed. Understanding potential differences in response to short term and short stretch conditions would benefit biomonitoring and restoration procedures in both regulated and natural rivers

    Regional Genetic Structure in the Aquatic Macrophyte Ruppia cirrhosa Suggests Dispersal by Waterbirds

    Get PDF
    The evolutionary history of the genus Ruppia has been shaped by hybridization, polyploidisation and vicariance that have resulted in a problematic taxonomy. Recent studies provided insight into species circumscription, organelle takeover by hybridization, and revealed the importance of verifying species identification to avoid distorting effects of mixing different species, when estimating population connectivity. In the present study, we use microsatellite markers to determine population diversity and connectivity patterns in Ruppia cirrhosa including two spatial scales: (1) from the Atlantic Iberian coastline in Portugal to the Siculo-Tunisian Strait in Sicily and (2) within the Iberian Peninsula comprising the Atlantic-Mediterranean transition. The higher diversity in the Mediterranean Sea suggests that populations have had longer persistence there, suggesting a possible origin and/or refugial area for the species. The high genotypic diversities highlight the importance of sexual reproduction for survival and maintenance of populations. Results revealed a regional population structure matching a continent-island model, with strong genetic isolation and low gene flow between populations. This population structure could be maintained by waterbirds, acting as occasional dispersal vectors. This information elucidates ecological strategies of brackish plant species in coastal lagoons, suggesting mechanisms used by this species to colonize new isolated habitats and dominate brackish aquatic macrophyte systems, yet maintaining strong genetic structure suggestive of very low dispersal.Fundacao para a Cincia e Tecnologia (FCT, Portugal) [PTDC/MAR/119363/2010, BIODIVERSA/0004/2015, UID/Multi/04326/2013]Pew FoundationSENECA FoundationMurcia Government, Spain [11881/PI/09]FCT Investigator Programme-Career Development [IF/00998/2014]Spanish Ministry of Education [AP2008-01209]European Community [00399/2012]info:eu-repo/semantics/publishedVersio

    Tracking down carbon inputs underground from an arid zone Australian calcrete.

    Get PDF
    Freshwater ecosystems play a key role in shaping the global carbon cycle and maintaining the ecological balance that sustains biodiversity worldwide. Surficial water bodies are often interconnected with groundwater, forming a physical continuum, and their interaction has been reported as a crucial driver for organic matter (OM) inputs in groundwater systems. However, despite the growing concerns related to increasing anthropogenic pressure and effects of global change to groundwater environments, our understanding of the dynamics regulating subterranean carbon flows is still sparse. We traced carbon composition and transformations in an arid zone calcrete aquifer using a novel multidisciplinary approach that combined isotopic analyses of dissolved organic carbon (DOC) and inorganic carbon (DIC) (δ13CDOC, δ13CDIC, 14CDOC and 14CDIC) with fluorescence spectroscopy (Chromophoric Dissolved OM (CDOM) characterisation) and metabarcoding analyses (taxonomic and functional genomics on bacterial 16S rRNA). To compare dynamics linked to potential aquifer recharge processes, water samples were collected from two boreholes under contrasting rainfall: low rainfall ((LR), dry season) and high rainfall ((HR), wet season). Our isotopic results indicate limited changes and dominance of modern terrestrial carbon in the upper part (northeast) of the bore field, but correlation between HR and increased old and 13C-enriched DOC in the lower area (southwest). CDOM results show a shift from terrestrially to microbially derived compounds after rainfall in the same lower field bore, which was also sampled for microbial genetics. Functional genomic results showed increased genes coding for degradative pathways-dominated by those related to aromatic compound metabolisms-during HR. Our results indicate that rainfall leads to different responses in different parts of the bore field, with an increase in old carbon sources and microbial processing in the lower part of the field. We hypothesise that this may be due to increasing salinity, either due to mobilisation of Cl- from the soil, or infiltration from the downstream salt lake during HR. This study is the first to use a multi-technique assessment using stable and radioactive isotopes together with functional genomics to probe the principal organic biogeochemical pathways regulating an arid zone calcrete system. Further investigations involving extensive sampling from diverse groundwater ecosystems will allow better understanding of the microbiological pathways sustaining the ecological functioning of subterranean biota
    corecore