194 research outputs found

    Grape production, technological parameters, and stilbenic compounds as affected by lime-induced chlorosis

    Get PDF
    Vitis vinifera L. cv. Merlot clone R3, grafted on 3309 C (lime-susceptible) rootstock, was grown in pots on a noncalcareous and a calcareous soil. The aim of the experiment was to check the effect of lime stress conditions on chlorosis, grape yield, technological parameters and stilbene (resveratrol, piceid, piceatannol, Δ-viniferin) concentrations in grapes. Lime-induced chlorosis decreased grape yield per plant to a very high extent, as a result of a reduction of cluster and berry size. Technological grape parameters such as soluble solids, pH, anthocyanins, increased under lime stress over the control, whilst titratable acidity was not affected. All the tested stilbenes, being stress compounds, increased in the grapes of chlorotic vines.

    Sensory profile of Italian Espresso brewed Arabica Specialty Coffee under three roasting profiles with chemical and safety insight on roasted beans

    Get PDF
    Specialty coffee (SC) has been showing an increasing interest from the consumers which appreciate its traceability and the peculiar flavours from each single origin. Additionally, the processes to which coffee fruits underwent to get green coffee characterise the beans in terms of macromolecules acting as substrates during the roasting. This work evaluates via sensory analysed eight SC, roasted at light, medium, and dark level, submitted to Italian espresso extraction, to assess how different roasting levels exalt the expected cup profile obtained by the suppliers via cupping in origin countries. Finally, roasted beans were characterised for physico-chemical features (pH, titratable acidity, caffeine, melanoidins, polyphenols and acrylamide). Sensory analysis demonstrated that the intermediate roasting level and espresso extraction match better attributes from in-origin cupping. Melanoidins (mmol g−1 coffee d.b.) was able to discriminate among roasting levels (light 0.12 Â± 0.01; medium 0.13 Â± 0.003; dark 0.14 Â± 0.01; α = 0.05). Acrylamide analyses ensured compliance with the food safety standards (light 301.9 Â± 37.2 ppb; medium 126.1±19ppb; dark 107.9 Â± 22.5ppb). Physico-chemical features were able to cluster samples from different origins within the same roasting level (α = 0.05). Results showed correlations (α = 0.01) between sensory analysis and physico-chemical values: direct for caffeine and astringency, reverse for perceived acidity in relation to astringency, roasted, dried fruits and nutty notes

    Teaching anatomy in a modern medical course: an integrated approach at Vialba Medical School in Milan

    Get PDF
    Introduction The course of Anatomy in Vialba Medical School \u2013 University of Milan, integrates systemic, topographic and development anatomy, dissection laboratory, peer-teaching, flipped classroom, clinical correlation to radiology and surgery. Methods An anonymous questionnaire based on a five-point Likert scale was submitted to 162 students who had passed the exam of Anatomy. Students evaluated the importance given during study to morphology, relations and variations of organs, the usefulness of different tools in preparing the exam of anatomy. Finally, the impact of the new design course of Anatomy on students\u2019 progress was assessed. Results The results showed that most of the students found very useful dissections, multimedia sources and 3D virtual models. 3D virtual models, dissections and physical models were indicated as the most important tools that should be available for learning Anatomy; instead, medical imaging received a low score. Students focused the study on morphology and relations between organs much more than anatomical variations. Lastly, students who followed the new design course of anatomy showed a significant better performance when compared to students of the previous academic years, in particular on the anatomy of neck, thoracic and abdominopelvic cavity, and neuroanatomy. Conclusions Our study underlines the positive impact of the integration of traditional methods and innovative solutions in learning anatomy, but also the critical approach to radiologic imaging and anatomical variability

    NoPv1: a synthetic antimicrobial peptide aptamer targeting the causal agents of grapevine downy mildew and potato late blight

    Get PDF
    Grapevine (Vitis vinifera L.) is a crop of major economic importance. However, grapevine yield is guaranteed by the massive use of pesticides to counteract pathogen infections. Under temperate- humid climate conditions, downy mildew is a primary threat for viticulture. Downy mildew is caused by the biotrophic oomycete Plasmopara viticola Berl. & de Toni, which can attack grapevine green tissues. In lack of treatments and with favourable weather conditions, downy mildew can devastate up to 75% of grape cultivation in one season and weaken newly born shoots, causing serious economic losses. Nevertheless, the repeated and massive use of some fungicides can lead to environmental pollution, negative impact on non-targeted organisms, development of resistance, residual toxicity and can foster human health concerns. In this manuscript, we provide an innovative approach to obtain specific pathogen protection for plants. By using the yeast two-hybrid approach and the P. viticola cellulose synthase 2 (PvCesA2), as target enzyme, we screened a combinatorial 8 amino acid peptide library with the aim to identify interacting peptides, potentially able to inhibit PvCesa2. Here, we demonstrate that the NoPv1 peptide aptamer prevents P. viticola germ tube formation and grapevine leaf infection without affecting the growth of non-target organisms and without being toxic for human cells. Furthermore, NoPv1 is also able to counteract Phytophthora infestans growth, the causal agent of late blight in potato and tomato, possibly as a consequence of the high amino acid sequence similarity between P. viticola and P. infestans cellulose synthase enzymes

    Metabolomics Combined with Sensory Analysis Reveals the Impact of Different Extraction Methods on Coffee Beverages from Coffea arabica and Coffea canephora var. Robusta

    Get PDF
    An untargeted metabolomics approach combined with sensory analysis was used to depict the impact of different traditional Italian extraction methods (i.e., Espresso, Neapolitan, Moka) along with Filter, on Coffea arabica and Coffea canephora var. robusta beverages. To this aim, polyphenols, Maillard reaction products, and coffee metabolites were screened by high resolution mass spectrometry and elaborated through both unsupervised and supervised multivariate statistical approaches. Multivariate statistics showed a distinctive chemical profile for Espresso preparation, while Moka and Neapolitan were very similar. The orthogonal projection to latent structures and discriminant analysis allowed the identification of 86 compounds showing a high VIP discrimination score (i.e., > 0.8). The 2,5-dimethyl-3-(methyldithio)-furan was a marker for the Filter preparation, while 1,2-disinapoylgentiobiose characterized both Filter and Neapolitan extractions. Caffeine (known to be a bitter compound) accumulated highly in Filter vs. Espresso, although at the sensory profile, bitterness was more perceived in Espresso. Vegetal aroma carried by pyrazines, pyridines, and phenolic acids were markers of Espresso, with Robusta showing higher values than Arabica. Notwithstanding, our findings showed that the extraction process played a hierarchically higher role in driving the chemical composition of the beverages when compared to coffee species

    ChAMBRe: studi su bio-aerosol in camera di simulazione atmosferica

    Get PDF
    Nella Sezione di Genova dell\u2019Istituto Nazionale di Fisica Nucleare \ue8 stata recentemente installata, in collaborazione con il Laboratorio di Fisica Ambientale del Dipartimento di Fisica dell\u2019Universit\ue0 di Genova, ChAMBRe (Chamber for Aerosol Modelling and Bio-aerosol Research), la prima Camera di simulazione atmosferica specificatamente concepita per studiare la componente biologica dell\u2019aerosol atmosferico. Presso la camera di simulazione atmosferica CESAM (Cr\ue9teil, Francia) sono sati effettuati alcuni esperimenti pilota recentemente pubblicati [1], che sono stati lo spunto per la costruzione di una struttura dedicata allo studio del comportamento dei pi\uf9 comuni agenti patogeni presenti in atmosfera sotto forma di bioaerosol e in particolare dei meccanismi che controllano le interazioni tra questi e le altre componenti dell\u2019aerosol e pi\uf9 in generale dell\u2019atmosfera. L\u2019attivit\ue0 di ricerca a ChAMBRe si concentrer\ue0 sull\u2019indagine del comportamento del bio-aerosol in differenti condizioni atmosferiche e in presenza di tipici inquinanti antropici (come il monossido di carbonio, gli ossidi di azoto, etc.) che possono influenzare la vitalit\ue0, la morfologia e la dispersione dei batteri in atmosfera. Come primo passo \ue8 necessario innanzitutto mettere a punto un protocollo che garantisca la riproducibilit\ue0 degli esperimenti in una struttura complessa come ChAMBRe. Ci si \ue8 quindi concentrati su aspetti cruciali quali: crescita in vitro e successiva iniezione in camera di una data concentrazione di batteri, seguita da una fase di estrazione, campionamento e misura della vita media all\u2019interno della camera. Gli esperimenti sono volti anche ad identificare eventuali condizioni di stress ambientali e meccaniche per i microrganismi e la loro risposta come singoli individui e come colonie. Sono stati eseguiti esperimenti su due tipologie di ceppi batterici frequentemente utilizzati come organismi modello: il Bacillus subtilis e l\u2019Escherichia coli, appartenenti rispettivamente al gruppo dei Gram-positivi e dei Gram-negativi. I risultati e il protocollo sperimentale messo a punto verranno presentati a PM2018

    High-throughput 18K SNP array to assess genetic variability of the main grapevine cultivars from Sicily

    Get PDF
    The viticulture of Sicily, for its vocation, is one of the most important and ancient forms in Italy. Autochthonous grapevine cultivars, many of which known throughout the world, have always been cultivated in the island from many centuries. With the aim to preserve this large grapevine diversity, previous studies have already started to assess the genetic variability among the Sicilian cultivars by using morphological and microsatellite markers. In this study, simple sequence repeat (SSR) were utilized to verify the true-to-typeness of a large clone collection (101) belonging to 21 biotypes of the most 10 cultivated Sicilian cultivars. Afterwards, 42 Organization Internationale de la Vigne et du Vin (OIV) descriptors and a high-throughput single nucleotide polymorphism (SNP) genotyping array (Vitis18kSNP) were applied to assess genetic variability among cultivars and biotypes of the same cultivar. Ampelographic traits and high-throughput SNP genotyping platforms provided an accuracy estimation of genetic diversity in the Sicilian germplasm, showing the relationships among cultivars by cluster and multivariate analyses. The large SNP panel defined sub-clusters unable to discern among biotypes, previously classified by ampelographic analysis, belonging to each cultivar. These results suggested that a very large number of SNP did not cover the genome regions harboring few morphological traits. Genetic structure of the collection revealed a clear optimum number of groups for K = 3, clustering in the same group a significant portion of family-related genotypes. Parentage analysis highlighted significant relationships among Sicilian grape cultivars and Sangiovese, as already reported, but also the first evidences of the relationships between Nero d’Avola and both Inzolia and Catarratto. Finally, a small panel of highly informative markers (12 SNPs) allowed us to isolate a private profile for each Sicilian cultivar, providing a new tool for cultivar identification

    Structuring of Bacterioplankton Diversity in a Large Tropical Bay

    Get PDF
    Structuring of bacterioplanktonic populations and factors that determine the structuring of specific niche partitions have been demonstrated only for a limited number of colder water environments. In order to better understand the physical chemical and biological parameters that may influence bacterioplankton diversity and abundance, we examined their productivity, abundance and diversity in the second largest Brazilian tropical bay (Guanabara Bay, GB), as well as seawater physical chemical and biological parameters of GB. The inner bay location with higher nutrient input favored higher microbial (including vibrio) growth. Metagenomic analysis revealed a predominance of Gammaproteobacteria in this location, while GB locations with lower nutrient concentration favored Alphaproteobacteria and Flavobacteria. According to the subsystems (SEED) functional analysis, GB has a distinctive metabolic signature, comprising a higher number of sequences in the metabolism of phosphorus and aromatic compounds and a lower number of sequences in the photosynthesis subsystem. The apparent phosphorus limitation appears to influence the GB metagenomic signature of the three locations. Phosphorus is also one of the main factors determining changes in the abundance of planktonic vibrios, suggesting that nutrient limitation can be observed at community (metagenomic) and population levels (total prokaryote and vibrio counts)

    A Mathematical Approach Lights up The Way to End Cholera Transmission

    Get PDF
    Killed, oral cholera vaccines have proven safe and effective, and several large-scale mass cholera vaccination efforts have demonstrated the feasibility of widespread deployment. This study uses a mathematical model of cholera transmission in Bangladesh to examine the effectiveness of potential vaccination strategies.We developed an age-structured mathematical model of cholera transmission and calibrated it to reproduce the dynamics of cholera in Matlab, Bangladesh. We used the model to predict the effectiveness of different cholera vaccination strategies over a period of 20 years. We explored vaccination programs that targeted one of three increasingly focused age groups (the entire vaccine-eligible population of age one year and older, children of ages 1 to 14 years, or preschoolers of ages 1 to 4 years) and that could occur either as campaigns recurring every five years or as continuous ongoing vaccination efforts. Our modeling results suggest that vaccinating 70% of the population would avert 90% of cholera cases in the first year but that campaign and continuous vaccination strategies differ in effectiveness over 20 years. Maintaining 70% coverage of the population would be sufficient to prevent sustained transmission of endemic cholera in Matlab, while vaccinating periodically every five years is less effective. Selectively vaccinating children 1-14 years old would prevent the most cholera cases per vaccine administered in both campaign and continuous strategies.We conclude that continuous mass vaccination would be more effective against endemic cholera than periodic campaigns. Vaccinating children averts more cases per dose than vaccinating all age groups, although vaccinating only children is unlikely to control endemic cholera in Bangladesh. Careful consideration must be made before generalizing these results to other regions
    • 

    corecore