58 research outputs found

    Monoclonal Antibody Activity in Human Umbilical Endothelial Cells That Possess Opposing Growth Factor Signaling Receptors

    Get PDF
    In various clinical settings such a peripheral vascular disease and diabetes, patients can develop leaky blood vessels that leads to the extravasation of fluid in surrounding tissues, mainly in the lower limbs, ultimately resulting in edema and compromised blood flow. In an attempt to maintain vascular integrity and stability researchers have tried to modulate two key receptors on endothelial cells, Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) and tunica internal endothelial cell kinase 2 (Tie2) receptor using various approaches, including ligand administration and small molecule inhibition of kinase activity on the intracellular part of Tie-2. Various strategies for a therapy include monoclonal antibodies (Mabs) that influence the aforementioned pathways. The current poster describes a monoclonal antibody that binds a cell surface target protein and indirectly modulates the Tie-2 receptor activity

    Effect of timed dosing of usual antihypertensives according to patient chronotype on cardiovascular outcomes:the Chronotype sub-study cohort of the Treatment in Morning versus Evening (TIME) study

    Get PDF
    Background: Timing drug administration to endogenous circadian rhythms may enhance treatment efficacy. In the Chronotype sub-study of the Treatment in Morning versus Evening (TIME) clinical trial we examined whether timing of usual antihypertensive medications according to patient chronotype (a behavioural marker of personal circadian rhythm) may influence clinical cardiovascular outcomes.Methods: This was a cohort sub-study of TIME, a prospective, randomised, open-label, blinded-endpoint, UK clinical trial of morning versus evening dosing of usual antihypertensive medications and cardiovascular outcomes. On August 3rd, 2020, all active TIME participants were invited to complete a validated chronotype questionnaire. Chronotype was quantitatively assessed as the mid sleep time on free days corrected for sleep debt on workdays (MSFsc). We analysed associations between chronotype and antihypertensive dosing time and explored their combined effect on cardiovascular outcomes (a composite endpoint of hospitalisation for non-fatal myocardial infarction (MI) or non-fatal stroke, and single components) using proportional hazard time-to-event models adjusted for baseline covariates. These were used to specifically test for interactions between dosing time and chronotype.Findings: Between August 3, 2020, and March 31, 2021, 5358 TIME participants completed the online questionnaire. 2778 were previously randomised to morning dosing and 2580 to evening dosing of their usual antihypertensives. Chronotype was symmetrically distributed around a median MSFsc of 3:07 am. The composite endpoint increased for later MSFsc (later chronotype) dosed in the morning but not in those dosed in the evening (hazard ratios 1.46 [95% CI 1.14-1.86] and 0.96 [95% CI 0.70-1.30] per hour of MSFsc, respectively; interaction p = 0.036). Later chronotype was associated with increased risk of hospitalisation for non-fatal MI in the morning dosing group, and reduced risk in the evening dosing group (hazard ratios 1.62 [95% CI 1.18-2.22] and 0.66 [95% CI 0.44-1.00] per hour of MSFsc, respectively; interaction p &lt; 0.001). No interaction between chronotype and antihypertensive dosing time was observed for stroke events.Interpretation: Alignment of dosing time of usual antihypertensives with personal chronotype could lower the incidence of non-fatal MI compared to a 'misaligned' dosing time regimen. Future studies are warranted to establish whether synchronizing administration time of antihypertensive therapy with individual chronotype reduces risk of MI.</p

    MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia.

    Get PDF
    A novel potassium channel gene has been cloned, characterized, and associated with cardiac arrhythmia. The gene encodes MinK-related peptide 1 (MiRP1), a small integral membrane subunit that assembles with HERG, a pore-forming protein, to alter its function. Unlike channels formed only with HERG, mixed complexes resemble native cardiac IKr channels in their gating, unitary conductance, regulation by potassium, and distinctive biphasic inhibition by the class III antiarrhythmic E-4031. Three missense mutations associated with long QT syndrome and ventricular fibrillation are identified in the gene for MiRP1. Mutants form channels that open slowly and close rapidly, thereby diminishing potassium currents. One variant, associated with clarithromycin-induced arrhythmia, increases channel blockade by the antibiotic. A mechanism for acquired arrhythmia is revealed: genetically based reduction in potassium currents that remains clinically silent until combined with additional stressors

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    3D Simulation of Tissue Mechanics with Cell Polarization

    No full text
    The 3D organisation of cells determines tissue function and integrity, and changes dramatically in development and disease. Cell-based simulations have long been used to define the underlying mechanical principles. However, large computational costs have so far limited simulations to either simplified cell geometries or small tissue patches. Here, we present SimuCell3D, a highly efficient open-source program to simulate large tissues in 3D with subcellular resolution, growth, proliferation, extracellular matrix, fluid cavities, nuclei, and non-uniform mechanical properties, as found in polarised epithelia. Spheroids, vesicles, sheets, tubes, and other tissue geometries can readily be imported from microscopy images and simulated to infer biomechanical parameters. Doing so, we show that 3D cell shapes in layered and pseudostratified epithelia are largely governed by a competition between surface tension and intercellular adhesion. SimuCell3D enables the large-scale in silico study of 3D tissue organization in development and disease at an unprecedented level of detail
    corecore