41 research outputs found
Exogenous NG-hydroxy-l-arginine causes nitrite production in vascular smooth muscle cells in the absence of nitric oxide synthase activity
AbstractNitric oxide (NO) production from exogenous NG-hydroxy-l-arginine (OH-l-Arg) was investigated in rat aortic smooth muscle cells in culture by measuring nitrite accumulation in the culture medium. As well, the interaction between OH-l-Arg and l-arginine uptake via the y+ cationic amino acid transporter was studied. In cells without NO-synthase activity, OH-l-Arg (1–1000 μM) induced a dose-dependent nitrite production with a half-maximal effective concentration (EC50) of 18.0 ± 1.5 μM (n = 4–7). This nitrite accumulation was not inhibited by the NO-synthase inhibitor NG-nitro-l-arginine methyl ester, l-NAME (300 μM). In contrast, it was abolished by miconazole (100 μM), an inhibitor of cytochrome P450. Incubation of vascular smooth muscle cells with LPS (10 μgml) induced an l-name inhibited nitrite accumulation, but did not enhance the OH-l-Arg induced nitrite production. OH-l-Arg and other cationic amino acids, L-lysine and l-ornithine, competitively inhibited [3H]-l-arginine uptake m rat aortic smooth muscle cells, with inhibition constants of 195 ± 23 μM(n = 12), 260 ± 40 μM(n= 5) and 330 ± 10 μM(n = 5), respectively. These results show that OH-l-Arg is recognized by the cationic l-amino acid carrier present in vascular smooth muscle cells and can be oxidized to NO and nitrite in these cells in the absence of NO-synthase, probably by cytochrome P450 or by a reaction involving a cytochrome P450 byproduct
Do physical activity interventions combining self-monitoring with other components provide an additional benefit compared with self-monitoring alone? A systematic review and meta-analysis
Objective To determine the net effect of different physical activity intervention components on step counts in addition to self-monitoring.
Design A systematic review with meta-analysis and meta-regression.
Data sources Five databases (PubMed, Scopus, Web of Science, ProQuest and Discus) were searched from inception to May 2022. The database search was complemented with backward and forward citation searches and search of the references from relevant systematic reviews.
Eligibility criteria Randomised controlled trials comparing an intervention using self-monitoring (active control arm) with an intervention comprising the same treatment PLUS any additional component (intervention arm).
Data extraction and synthesis The effect measures were mean differences in daily step count. Meta-analyses were performed using random-effects models, and effect moderators were explored using univariate and multivariate meta-regression models.
Results Eighty-five studies with 12 057 participants were identified, with 75 studies included in the meta-analysis at postintervention and 24 at follow-up. At postintervention, the mean difference between the intervention and active control arms was 926 steps/day (95% CI 651 to 1201). At a follow-up, the mean difference was 413 steps/day (95% CI 210 to 615). Interventions with a prescribed goal and involving human counselling, particularly via phone/video calls, were associated with a greater mean difference in the daily step count than interventions with added print materials, websites, smartphone apps or incentives.
Conclusion Physical activity interventions that combine self-monitoring with other components provide an additional modest yet sustained increase in step count compared with self-monitoring alone. Some forms of counselling, particularly remote phone/video counselling, outperformed other intervention components, such as websites and smartphone apps
The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons
Despite the accumulating knowledge on the development and establishment of the gut microbiota, its role as a reservoir for multidrug resistance is not well understood. This study investigated the prevalence and persistence patterns of an integrase gene (int1), used as a proxy for integrons (which often carry multiple antimicrobial resistance genes), in the fecal microbiota of 147 mothers and their children sampled longitudinally from birth to 2 years. The study showed the int1 gene was detected in 15% of the study population, and apparently more persistent than the microbial community structure itself. We found int1 to be persistent throughout the first two years of life, as well as between mothers and their 2-year-old children. Metagenome sequencing revealed integrons in the gut meta-mobilome that were associated with plasmids and multidrug resistance. In conclusion, the persistent nature of integrons in the infant gut microbiota makes it a potential reservoir of mobile multidrug resistance
Tree diversity and species identity effects on soil fungi, protists and animals are context dependent
Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se
High-level classification of the Fungi and a tool for evolutionary ecological analyses
High-throughput sequencing studies generate vast amounts of taxonomic data. Evolutionary ecological hypotheses of the recovered taxa and Species Hypotheses are difficult to test due to problems with alignments and the lack of a phylogenetic backbone. We propose an updated phylum-and class-level fungal classification accounting for monophyly and divergence time so that the main taxonomic ranks are more informative. Based on phylogenies and divergence time estimates, we adopt phylum rank to Aphelidiomycota, Basidiobolomycota, Calcarisporiellomycota, Glomeromycota, Entomophthoromycota, Entorrhizomycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota and Olpidiomycota. We accept nine subkingdoms to accommodate these 18 phyla. We consider the kingdom Nucleariae (phyla Nuclearida and Fonticulida) as a sister group to the Fungi. We also introduce a perl script and a newick-formatted classification backbone for assigning Species Hypotheses into a hierarchical taxonomic framework, using this or any other classification system. We provide an example of testing evolutionary ecological hypotheses based on a global soil fungal data set.Peer reviewe
Microbial expression profiles in the rhizosphere of two maize lines differing in N use efficiency
Aims: Study of the microbial expression profile in the rhizosphere of two contrasting maize lines, differing in the Nitrogen Use efficiency (NUE). Methods: The Lo5 and T250 inbred maize characterized by high and low NUE, respectively, were grown in rhizoboxes allowing precise sampling of rhizosphere and bulk soils. We conducted metatranscriptomic of rhizosphere and bulk soil by m-RNA sequencing. Results: High activity of bacteria was observed compared to archaea and fungi in both rhizosphere and bulk soils of both maize lines. Proteobacteria and Actinobacteria were involved in all processes, while significant shifts occurred in the expression of Bacteroidetes, Chloroflexi, Firmicutes, Acidobacteria, Cyanobacteria, archaea and fungi, indicating their possible role in specific processes occurring in rhizosphere of two maize lines. Maize plants with different NUE induced changes in microbial processes, especially in N cycling, with high NUE maize favouring ammonification and nitrification processes and low NUE maize inducing expression of genes encoding for denitrifying process, likely favoured by longer N residence time in the rhizosphere. Conclusions: Overall our results showed that maize lines with different NUE shaped not only microbial communities but also conditioned the microbial functions and the N cycle in their rhizosphere. While the plant NUE is genetically determined and an inherent plant physiological trait, it also stimulates changes in the microbial community composition and gene expression in the rhizosphere, favouring microbial processes that mineralize and oxidize N in the high NUE maize. These results can improve our understanding on plant-microbe interaction in the rhizosphere of crop plants with potential applications for improving the management practices of the agro-ecosystems