305 research outputs found

    Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest

    Get PDF
    Nighttime vegetative uptake of carbonyl sulfide (COS) can exist due to the incomplete closure of stomata and the light independence of the enzyme carbonic anhydrase, which complicates the use of COS as a tracer for gross primary productivity (GPP). In this study we derived nighttime COS fluxes in a boreal forest (the SMEAR II station in Hyytiälä, Finland; 61°51′ N, 24°17′ E; 181 m a.s.l.) from June to November 2015 using two different methods: eddy-covariance (EC) measurements (FCOS-EC) and the radon-tracer method (FCOS-Rn). The total nighttime COS fluxes averaged over the whole measurement period were −6.8 ± 2.2 and −7.9 ± 3.8 pmol m−2 s−1 for FCOS-Rn and FCOS-EC, respectively, which is 33–38 % of the average daytime fluxes and 21 % of the total daily COS uptake. The correlation of 222Rn (of which the source is the soil) with COS (average R2  =  0.58) was lower than with CO2 (0.70), suggesting that the main sink of COS is not located at the ground. These observations are supported by soil chamber measurements that show that soil contributes to only 34–40 % of the total nighttime COS uptake. We found a decrease in COS uptake with decreasing nighttime stomatal conductance and increasing vapor-pressure deficit and air temperature, driven by stomatal closure in response to a warm and dry period in August. We also discuss the effect that canopy layer mixing can have on the radon-tracer method and the sensitivity of (FCOS-EC) to atmospheric turbulence. Our results suggest that the nighttime uptake of COS is mainly driven by the tree foliage and is significant in a boreal forest, such that it needs to be taken into account when using COS as a tracer for GPP

    CH4 and N2O dynamics in the boreal forest-mire ecotone

    Get PDF
    201

    Phase-Matched Second-Harmonic Generation from Metasurfaces Inside Multipass Cells

    Full text link
    We demonstrate a simple and scalable approach to increase conversion efficiencies of nonlinear metasurfaces by incorporating them into multipass cells and by letting the pump beam to interact with the metasurfaces multiple times. We experimentally show that by metasurface design, the associated phase-matching criteria can be fulfilled. As a proof of principle, we achieve phase matching of second-harmonic generation (SHG) using a metasurface consisting of aluminium nanoparticles deposited on a glass substrate. The phase-matching condition is verified to be achieved by measuring superlinear dependence of the detected SHG as a function of number of passes. We measure an order of magnitude enhancement in the SHG signal when the incident pump traverses the metasurface up to 9 passes. Results are found to agree well with a simple model developed to estimate the generated SHG signals. We also discuss strategies to further scale-up the nonlinear signal generation. Our approach provides a clear pathway to enhance nonlinear optical responses of metasurface-based devices. The generic nature of our approach holds promise for diverse applications in nonlinear optics and photonics

    Hydrocarbon fluxes above a Scots pine forest canopy: Measurements and modeling

    Get PDF
    International audienceWe measured the fluxes of several hydrocarbon species above a Scots pine (Pinus sylvestris) stand using disjunct eddy covariance technique with proton transfer reaction ? mass spectrometry. The measurements were conducted during four days in July at SMEAR II research station in Hyytiälä, Finland. Compounds which showed significant emission fluxes were methanol, acetaldehyde, acetone, and monoterpenes. A stochastic Lagrangian transport model with simple chemical degradation was applied to assess the sensitivity of the above canopy fluxes to chemistry. According to the model, the chemical degradation had a minor effect on the fluxes measured in this study but has a major effect on the vertical flux profiles of more reactive compounds, such as sesquiterpenes. The monoterpene fluxes followed the traditional exponential temperature dependent emission algorithm but were considerably higher than the fluxes measured before at the same site. The normalized emission potential (30°C) was 2.5 ?g gdw?1 h?1 obtained using the temperature dependence coefficient of 0.09°C?1
    corecore