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Correspondence to: B. Ťupek (boris.tupek@helsinki.fi)

Received: 28 April 2014 – Published in Biogeosciences Discuss.: 4 June 2014

Revised: 13 November 2014 – Accepted: 3 December 2014 – Published: 16 January 2015

Abstract. In spite of advances in greenhouse gas research,

the spatiotemporal CH4 and N2O dynamics of boreal land-

scapes remain challenging, e.g., we need clarification of

whether forest–mire transitions are occasional hotspots of

landscape CH4 and N2O emissions during exceptionally high

and low ground water level events.

In our study, we tested the differences and drivers of CH4

and N2O dynamics of forest/mire types in field conditions

along the soil moisture gradient of the forest–mire ecotone.

Soils changed from Podzols to Histosols and ground water

rose downslope from a depth of 10 m in upland sites to 0.1 m

in mires. Yearly meteorological conditions changed from be-

ing exceptionally wet to typical and exceptionally dry for

the local climate. The median fluxes measured with a static

chamber technique varied from −51 to 586 µg m−2 h−1 for

CH4 and from 0 to 6 µg m−2 h−1 for N2O between forest and

mire types throughout the entire wet–dry period.

In spite of the highly dynamic soil water fluctuations in

carbon rich soils in forest–mire transitions, there were no

large peak emissions in CH4 and N2O fluxes and the flux

rates changed minimally between years. Methane uptake was

significantly lower in poorly drained transitions than in the

well-drained uplands. Water-saturated mires showed large

CH4 emissions, which were reduced entirely during the ex-

ceptional summer drought period. Near-zero N2O fluxes did

not differ significantly between the forest and mire types

probably due to their low nitrification potential. When up-

scaling boreal landscapes, pristine forest–mire transitions

should be regarded as CH4 sinks and minor N2O sources in-

stead of CH4 and N2O emission hotspots.

1 Introduction

Soil fertility, soil water content, and soil carbon storage

of boreal forests varies between well-drained mineral soils

mainly found in uplands and poorly drained organic soils

mainly found in peatlands (Seibert et al., 2007; Weisham-

pel et al., 2009). The CH4 and N2O fluxes from mineral

and organic soils are impacted by varying soil moisture con-

ditions (Solondz et al., 2008; Pihlatie et al., 2004). Typi-

cal mineral soil forests are small sinks of CH4 and small

sources or sinks of N2O (Moosavi and Crill, 1997; Pihlatie

et al., 2007). Sparsely forested peatlands are typically large

or small sources of CH4 and small sources or sinks of N2O

(Martikainen et al., 1995; Nykänen et al., 1995; D’Angelo

and Reddy, 1998). Field CH4 and N2O studies of natural bo-

real forest–mire ecotones are rare (e.g., Ullah et al., 2009;

Ullah and Moore, 2011) in comparison to those of typical

forests or mires. However, the area of forest–mire transitions

is relatively large, e.g., in Finland, forested mires with an or-

ganic horizon < 30 cm cover 1.5 million hectare or approx-

imately 7 % of the total forest area (Finnish statistical year-

book of forestry, 2013), and at the present time it is not clear

whether the terrestrial–aquatic interfaces, such as the forest–

mire transition, represents a biogeochemical hotspot of CH4

and N2O emissions (McClain et al., 2003).

The lagg transitional zone in the forest–mire ecotone re-

ceives nutrients from the adjacent mineral soil runoff, and is

thus more minerotrophic, biologically diverse, and produc-

tive than open mires or bogs (Howie and Meerveld, 2011).

Furthermore, ecotones between forests and mires are ecolog-

ical switches (Agnew et al., 1993), where the vegetation of

forests and mires coincide and soils frequently undergo fluc-

tuations in water level position and chemistry (Hartshorn et

al., 2003; Howie and Meerveld, 2011), and where the CH4
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and N2O dynamics of forest–mire transitions may be ex-

pected to differ generally and on a year-to-year basis from

those of typical forests and mires.

The CH4 uptake of forest soils is a result of CH4 oxi-

dizing aerobic methanotrophs sensitive to water saturation,

soil porosity, moisture, temperature, pH, and ammonium

(Moosavi and Crill, 1997; Saari et al., 2004; Jaatinen et al.,

2004). Unsaturated upland forest soils oxidize CH4 at higher

rates than more water-saturated, acidic, and ammonium rich

forested peat soils (Saari et al., 2004). In contrast to the CH4

sinks of upland forest soils, and drained peatlands, natural

mires emit CH4 to the atmosphere (Bubier et al., 1995; Nykä-

nen et al., 1998; Kettunen et al., 1999). CH4 production in

peat soil is a result of methanogenic and methanotrophic ac-

tive bacteria, whose activity depends on anoxic and oxic con-

ditions below and above the water level, temperature, and

availability of carbon substrate (Kettunen et al., 1999). In-

creasing soil wetness increases anoxic conditions necessary

for increased methanogenesis (Juottonen et al., 2005), and as

a result CH4 emissions increase (Saarnio et al., 1997; Oja-

nen et al., 2010; Yrjälä et al., 2011). Methane production po-

tential in peat soils generally increases positively with pH

(Juottonen et al., 2005; Ye et al., 2012), whereas CH4 oxida-

tion of forested peatlands has a narrow pH optimum around

5.5 (Saari et al., 2004). Increased pH levels, e.g., through the

inflow of less acidic mineral soil water, typically containing

greater calcium and bicarbonate concentrations than peat wa-

ter (Howie and Meerveld, 2011), could increase CH4 emis-

sions from transitions.

N2O emissions in well-drained boreal forest soils are con-

trolled by soil moisture, pH, available nitrate, ammonium,

oxygen, and carbon concentrations (Regina et al., 1996; Ul-

lah et al., 2008). N2O production is limited by the amount

of nitrogen and is subject to denitrification and nitrification

processes (Ambus et al., 2006). In well-drained soils NO3

limitation, anoxic microsites, and larger soil porosity may

also promote N2O consumption (Frasier et al., 2010). N2O

consumption of soils correlates with dehydrogenase activity,

which is affected by oxidation-reduction status and possi-

bly controlled by soil moisture (Wlodarczyk et al., 2005).

The N2O consumption by soils is attributed to respiratory re-

duction (Conrad, 1996) caused by denitrifiers and nitrifiers

(Rosenkranz et al., 2006). N2O emissions increase during

drier periods through increased ammonification and nitrifica-

tion (Regina et al., 1996; Nykänen et al., 1995; Von Arnold

et al., 2005). In water-saturated minerotrophic peatlands ni-

trification supplies nitrate (Wrage et al., 2001) for denitrifi-

cation, which is the main but small N2O source (Wray et al.,

2007; Frasier et al., 2010). In nutrient rich mires, N2O emis-

sions increase during drier periods through increased am-

monification and nitrification (Regina et al., 1996; Nykänen

et al., 1995; Von Arnold et al., 2005). Nitrification and the

supply of nitrate for denitrification increases with higher pH

(Regina et al., 1996). However, if nitrate is available, low pH

increases N2O emissions (Weslien et al., 2009). Therefore, if

nitrate were present during water level drawdown, the forest–

mire transitions could become sources of N2O.

Our aims were (1) to test whether forest floor CH4 and

N2O fluxes of the forest–mire transition differ from the typ-

ical upland forests and lowland mires of natural boreal land-

scapes and (2) how meteorologically different years, i.e.,

exceptionally wet (2004), typical (2005), and exceptionally

dry (2006), affect the fluxes.

We addressed the question of whether increasing wet-

ness in forest–mire transitions promotes CH4 production, and

whether dry conditions reduce CH4 production and increase

N2O emissions. We hypothesized that forest/mire types ex-

hibit distinct levels of CH4 and N2O fluxes due to the chang-

ing soil structure from Podzols to Histosols and due to in-

creasing soil water content from xeric to saturated. We ex-

pected that the occasionally saturated organo-mineral soils of

forest–mire transitions are variable sources of CH4 and N2O

fluxes. In order to evaluate the underlying factors behind CH4

and N2O forest floor fluxes, we measured the fluxes and en-

vironmental variables, such as soil temperature, soil mois-

ture, water table depth, and soil water pH, in nine sites along

the forest–mire ecotone during exceptionally different mete-

orological conditions. In order to detect statistically signifi-

cant differences between CH4 and N2O fluxes of nine sites

we used two-way analysis of variance, and for better under-

standing of flux responses to environmental factors we used

linear and nonlinear regression models, and residual sensitiv-

ity analysis.

2 Material and methods

2.1 Study site characteristics

The Vatiharju–Lakkasuo ecotone of nine forest and mire

study sites forms a gradient in vegetation communities, soil

moisture and nutrient conditions in central Finland (61◦47′,

24◦19′) (Ťupek et al., 2008). Forest/mire types were classi-

fied using the Finnish classification systems (Cajander, 1949;

Laine et al., 2004) based on soil fertility reflected by the com-

position and abundance of forest floor vegetation, and by the

site location on the slope. The ecotone study sites are situated

along a 450 m transect on a hillslope with a relative relief of

15 m and a 3.3 % slope facing NE (Fig. 1a). The fertility of

the forest/mire sites increase from the poorly fertile sites at

the xeric and saturated edges of the ecotone towards the most

fertile Oxalis-Myrtillus type forest (OMT) in the middle of

the hillslope (Fig. 1b).

Dominant vegetation composition changes with increas-

ing soil moisture down the slope. Xeric Scots pine forest

(CT – Calluna type) on the summit of glacial sandy es-

ker gives way to subxeric Scots pine Norway spruce for-

est (VT – Vaccinium vitis-idaea type) on the shoulder, and

mesic and herb rich Norway spruce dominated types on

the back slope and footslope (MT – Vaccinium myrtillus
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Table 1. Site soil water solution pH and soil properties.

CT VT MT OMT OMT+ KgK KR VSR1 VSR2

mean SE mean SE mean SE mean SE mean SE mean SE mean SE mean SE mean SE

pH 10 cm 5.57 0.36 5.14 0.42 5.24 0.08 4.68 0.39 4.58 0.30 4.46 0.14 4.37 0.22 5.06 0.39 4.80 0.44

pH 30 cm 6.20 0.06 6.18 0.02 5.91 0.13 5.30 0.11 5.53 0.04 4.91 0.10 4.55 0.08 5.32 0.15 4.79 0.19

Bulk density 0–10 cm 0.37 0.09 0.28 0.04 0.48 0.03 0.27 0.09 0.31 0.13 0.33 0.05 0.24 0.02 0.40 0.12 0.40 0.12

Bulk density 10–30 cm 0.92 0.07 0.31 0.12 0.85 0.03 0.90 0.07 0.90 0.07

Tot C (%) 0–10 cm 43.17 24.22 49.63 47.09 45.36 48.68 50.30 45.76 48.20

Tot C (%) 10–30 cm 21.76 53.31 48.33 47.70 49.97

Tot N (%) 0–10 cm 1.02 0.61 1.18 1.59 2.19 1.47 1.12 1.29 0.96

Tot N (%) 10–30 cm 0.96 1.95 1.45 1.87 1.81

C /N 0–10 cm 42.32 39.70 42.06 29.62 20.71 33.12 44.91 35.47 50.21

C /N 10–30 cm 22.67 27.34 33.33 25.51 27.61

Figure 1. (a) Airborne infrared photograph shows a 450 m long

boreal forest–mire ecotone located on the NE slope of the glacial

Vatiharju–Lakkasuo esker in Finland (61◦47′, 24◦19′). (b) The fish-

eye photographs show tree stands of xeric (1), subxeric (2), mesic

(3), herb rich (4), paludified (5–7), and saturated (8–9) forest/mire

types. (c) Photographs show ground vegetation and (d) soil profiles

of nine forest/mire types. Upland forests: 1 CT – Calluna, 2 VT

– Vaccinium vitis-idaea, 3 MT – Vaccinium myrtillus, 4 OMT –

Oxalis-Myrtillus; forest–mire transition types: 5 OMT+ – Oxalis-

Myrtillus paludified, 6 KgK – Myrtillus spruce forest paludified, 7

KR – spruce pine swamp; sparsely forested wet mire types: 8 VSR1

and 9 VSR2 – tall sedge pine fen.

type, OMT – Oxalis-Myrtillus type). The toe slope con-

tains forest–mire transitions of paludified mixed spruce–

pine–birch forests (OMT+ – Oxalis-Myrtillus paludified,

KgK – Myrtillus spruce forest paludified). There is a per-

manently wet mixed spruce–pine–birch swamp (KR – spruce

pine swamp) at the mire edge of the forest–mire transitions.

On the level of the hillslope there are birch–pine fen mires

with open tree canopies (VSR1 and VSR2 – tall sedge pine

fen) (Fig. 1b). The forest floor vegetation is composed of site-

specific mosses and vascular plants (Fig. 1c).

Soils are formed by well-drained Haplic Podzols on the

hillslope, intermediately drained Histic and Gleyic-Histic

Podzols in the forest–mire transitions on the toe of the slope,

and permanently wet Hemic Histosols downslope (Fig. 1d).

We measured pH during summer campaign 2005 from soil

water data collected on all sites by suction cup lysimeters.

Three lysimeters were installed in 10 cm and one in 30 cm

depth below the soil surface in each site. Detailed descrip-

tion of the lysimeters and sampling procedure can be found

in Starr (1985). The pH was measured on the day of water

sampling in the laboratory by pH meter equipped with a glass

electrode. The mean acidity level of the sites of forest–mire

ecotone was gradually increasing from pH 5.6 in uplands

(CT) to 4.4 in transitions (KR), whereas mires were less acid

than transitions with pH 5.1 and 4.8 (VSR1 and VSR2, re-

spectively) (Table 1). Collected soil water from 30 cm depth

showed generally higher pH than soil water pH at 10 cm

depth. Three soil cores for each plot were taken in July 2006

from the top soil (0–10 cm) in upland forests and from the

two profile depths (0–10, 10–30 cm) in forest–mire transi-

tions and in peatlands. The volume of samples was measured

before the oven drying at 70 ◦C to determine the bulk den-

sity. The bulk density of the upper organic layer ranged from

0.24 g cm−3 (KR) to 0.48 g cm−3 (MT) and was approxi-

mately half of the bulk density of the organic layer from 10

to 30 cm depth (mean of transitions and mires 0.77 g cm−3)

(Table 1). The C /N ratio was determined once for each plot

from the soil organic matter analyzed by dry combustion with

Leco CNS-1000 (Leco Corp., USA). The C /N ratio was

wider in the 0–10 cm profile (mean 37) than in the 10–30 cm

profile (mean 27). The highest N content as well as the low-

est C /N ratio along the ecotone was found in forest–mire
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transitions OMT+ and KgK (Table 1). A more detailed for-

est/mire type characterization is given by Ťupek et al. (2008).

2.2 Micrometeorological conditions

The micrometeorological measurements along the Vatiharju–

Lakkasuo forest–mire ecotone were taken weekly during the

summers of 2004 (July–November), 2005 (May–November),

2006 (May–September), and monthly during the winters

(December–April). The forest floor soil temperatures (◦C) at

depths of 5, 15, and 30 cm (T5, T15, and T30) were measured

using a portable thermometer connected to thermocouples

installed permanently in the soil. The volumetric soil mois-

ture (%) at depths of 5, 10, and 30 cm (soil water content

– SWC5, SWC10, and SWC30) was measured by a portable

ThetaProbe (Delta-T Devices Ltd.) in diagonally installed

perforated PVC tubes, to ensure the same compactness of the

soil. The depth of water table was measured inside PVC tubes

(∅ 30 mm) installed at each site. Precipitation was measured

by an automated bucket system at a station for monitoring

forest – atmosphere relations, SMEARII (Hari and Kulmala,

2005), located 6 km north – west from the forest–mire eco-

tone. Missing soil temperature and moisture data of ecotone

were gap filled by linear regression between continuous mea-

surements of soil temperature and moisture at SMEARII.

2.3 CH4 and N2O fluxes

The field gas sampling was conducted weekly in the 2004

and 2005 seasons, bi-weekly during the 2006 season, and

monthly during the winters. The gas sampling was done

within 3-days interval of the micrometeorological measure-

ments. If there was packed snow on the ground, the gas sam-

ples would be taken from the top and bottom layers; and the

CH4 (µg m−2 h−1) and N2O (µg m−2 h−1) fluxes were cal-

culated by the snowpack diffusion method using each gas

concentration difference, snow depth, porosity and temper-

ature, and gas diffusion coefficients as in Sommerfeld et

al. (1993). Otherwise, if there was no snowpack, the sam-

ples would be taken from three opaque, vented, closed, static

chambers (∅ 315 mm, h 295 mm) placed air tightly on pre-

installed collars. On each measuring occasion a sample of

ambient gas and four 15 ml samples from each of the three

chambers were drawn in syringes at intervals of 5, 10, 15,

and 20 min from chamber closure, totaling 13 samples for

each site. Chamber temperature was monitored during the

sampling. After the sampling event, the gas samples were

stored in coolers at +4 ◦C and analyzed within 36 h in a lab-

oratory with a gas chromatograph. The gas chromatograph

(Hewlett-Packard, USA) model number HP-5890A was fit-

ted with a flame ionization detector (FID) for CH4 and an

electron capture detector (ECD) for N2O detection. The gas

chromatograph was also equipped with a moisture trap. Prior

to analysis of field samples and after each set of 13 samples

a reference gas sample of known CH4 and N2O concentra-

tion was analyzed. The CH4 (µg m−2 h−1) and N2O (µg m−2

h−1) fluxes were calculated from the slope of linear regres-

sion between the set of four gas concentrations and sampling

time, time elapsed after the chamber closure, and by apply-

ing temperature correction. For the flux calculation we used

a MATLAB (The Mathworks Inc.) script developed at the

Dept. of Physics, University of Helsinki.

The method quantification limit (MQL) of the gas chro-

matograph was based on 100 subsequently analyzed sam-

ples of reference gas of known CH4 and N2O concentrations

(mean± two SD: 1.837± 0.055 and 0.295± 0.023 ppm, re-

spectively) and reference gas samples analyzed before the set

of field samples for each site. The MQL was a gas-specific

standard deviation of the random fluxes derived from 1000

random sets of four CH4 or N2O concentrations of refer-

ence gas samples (22 µg m−2 h−1 for CH4 and 18 µg m−2 h−1

for N2O). In order to minimize the random error related

to gas sampling in the field, fluxes were verified using the

ambient field air sample analyzed before each sequence of

chamber samples adopting similar criteria as used in Alm et

al. (2007). Due to gas sampling disturbances in the field and

poor gas chromatograph accuracy 17 % of CH4 and 49 % of

N2O fluxes were discarded.

2.4 Statistical analysis

Two-way analysis of variance (ANOVA) was used to test

whether CH4 and N2O fluxes of forest/mire types have com-

mon means in wet, typical, and dry years. Post hoc Tukey

HSD (honest significant difference) tests were used to test

the pairwise differences between the forest and mire types

and years changing from wet to dry. For CH4 fluxes we ran

ANOVA tests twice, first on the whole data set including nine

forest/mire types and then on a subset of data including up-

land forests and forest–mire transitions, and excluding mires.

For testing significant differences between the two groups

of data we performed Welch’s two sample t test, e.g., be-

tween the N2O fluxes from the snow on the ground season

(January–April in 2006) and the N2O fluxes from the snow-

less seasons (May–November in 2005 and May–September

in 2006).

In addition to ANOVA, we tested the dependence be-

tween the measured CH4 (µg m−2 h−1) and the gap filled

half-hourly environmental variables in separate models for:

(a) the upland forests on mineral soils (CT, VT, MT, OMT),

and (b) forest–mire transitions on organo-mineral soils and

(OMT+, KgK, and KR) (c) mires (VSR1, VSR2).

CH4 fluxes (µg m−2 h−1) of uplands and transitions were

fitted by two linear mixed-effects regression models with a

random effect for forest types (Pinheiro et al., 2013). For both

groups of forest types, we evaluated the effect of all our envi-

ronmental variables on CH4 together and their combinations

iteratively by selecting the model combination of variables

that were significant.
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The CH4 fluxes for upland forests and transitions included

soil moisture at 10 cm (%) (SWC10) and soil temperature at

5 cm (◦C) (T5) as predictors in separate models (Eqs. 1 and

2):

yuij = βCTSWC10+βVTSWC10+βMTSWC10 (1)

+βOMTSWC10+βCTT5 +βVTT5+βMTT5+βOMTT5

+ bCT+ bVT+ bMT+ bOMT+ εij ,

ytij = βOMT+SWC10+βKgKSWC10+βKRSWC10 (2)

+βOMT+T5+βKgKT5+βKRT5+ bOMT+

+ bKgK+ bKR+ εij ,

where yuij and ytij are the CH4 flux (µg m−2 h−1) for up-

land forests or transitions and for a particular ith forest type

and the j th observation, βCT through βKR are the fixed ef-

fect coefficients for a particular ith forest type (CT, VT, MT,

OMT Eq. 1, or OMT+, KgK, and KR Eq. 2), SWC10, and

T5 are the fixed effect variables (predictors) for observation

j in forest type i where each forest type’s predictor is as-

sumed to be multivariate normally distributed, bCT through

bKR are intercepts for the random effect for a particular ith

forest type, and εij is the error for case j in forest type i

where each forest type’s error is assumed to be multivariate

normally distributed (Table 2).

The CH4 fluxes (µg m−2 h−1) of mires were fitted by using

a multiplicative nonlinear regression model with a combined

response to water table depth and soil temperature at 5 cm

Eq. (1):

yij = a0e

(
−0.5

(
WT-WTopt

WTtol

)2
)
e

(
−0.5

(
T 5-Topt

Ttol

)2
)
+ εij , (3)

where yij is the CH4 flux (µg m−2 h−1) for the ith mire

(VSR1,VSR2) and for the j th case, WT (cm) is water table

depth, T 5 (◦C) is soil temperature at 5 cm, and a0, WTopt,

WTtol, Topt, and Ttol are parameters (Table 3).

The N2O fluxes (µg m−2 h−1) of all forest/mire types were

fitted by using one multiplicative nonlinear regression model

with a combined response to soil moisture and soil tempera-

ture at 5 cm Eq. (4):

zij = a0SWC5e

(
−0.5

(
T 5-Topt

Ttol

)2
)
+ εij , (4)

where zij is the N2O flux (µg m−2 h−1) for the ith mire

(VSR1,VSR2) and for the j th case, SWC5 (%) is soil mois-

ture at 5 cm, and T5 (◦C) is soil temperature at 5 cm, and a0,

Topt, and Ttol are parameters (Table 4).

To illustrate the sensitivity of CH4 and N2O flux response

to environmental factors we performed a residual analysis by

simulating a value for each data point with only one factor

allowed to vary and the other set to its mean level. To exam-

ine correlations between CH4 and N2O fluxes and pH, and

soil properties we preformed the Pearson’s correlation tests.

The statistical analyses were performed in MATLAB R2012a

(The Mathworks Inc.) and in R (R Core Team 2013) software

environments.

3 Results

3.1 Micrometeorological conditions

The largest differences between years 2004, 2005, and 2006

were seen in changing summer precipitation patterns (mea-

sured nearby the SMEARII station). The average June–

August monthly precipitation was reduced from 94 to 44 mm

from a wet 2004 to a dry 2006, while ambient temperature

increased from 14 to 17 ◦C. In the coldest summer (2004)

the average precipitation in June and July was over 117 mm,

and dropped to 47 mm in August. In the typically warm sum-

mer of 2005 the monthly precipitation gradually increased up

to 123 mm in August, and dropped to 58 mm in September.

However, in the warmest summer (2006) the monthly pre-

cipitation never reached more than 48 mm. In July 2006, two

rainless weeks induced a drought. By drought we mean that

the soil water content in the upper soil layer (in mineral soils)

was so low that mosses wilted and dried (all along the eco-

tone). The drought conditions lessened in mid-August and

ended in September with increasing rains towards autumn.

Late autumn was exceptionally warm and snowless.

Monthly median soil temperatures at 5 cm (T5) ranged

from around 5 ◦C in May, culminated to around 15–16 ◦C

in July and August, and subsided again to around 5 ◦C in Oc-

tober. The non-vegetative season T5 minimum was close to

0 ◦C. The warmest T5 was in upland forest CT and the cold-

est was in upper forest–mire transition OMT+. Soil temper-

ature slightly increased from forest–mire transitions towards

mires. In spite of the ambient air temperature difference

throughout all the months in the 3 years, we detected dif-

ferences mainly during early and late season in 2004, 2005,

and 2006 T5 (Fig. 2a).

The median water table (WT) showed the obvious rise

from 10 m at the summit of the hill, to around 1 m in the

mid-slope, between 0.5 and 0.1 m at the toe slope, and close

to 0.01 m on the level (Fig. 2b). The seasonal WT rise in 2005

was observed between the July and August medians. During

the drought of 2006, the WT values dropped less than 0.1 m

for the uppermost forest sites, but dropped heavily by ∼ 1 m

in the forest–mire transitions, and more than 0.5 m in the low-

ermost peatland sites.

Volumetric SWC in 10 cm depth ranged from a dry value

of around 10 % in the mineral soils to a water-saturated value

of around 80 % in swamp and mires (Fig. 2c). The largest

drought reduction of SWC was in August 2006 on the well-

drained sandy Podzols at the summit of the hill, and also on

the poorly drained Histic Podzols on the toe slope.

3.2 CH4 fluxes

The median fluxes from the forest floor varied from −51

to 586 µg m−2 h−1 for CH4 among individual sites during

the entire period (Fig. 3a). The small negative CH4 fluxes

associated with prevailing oxidation were mostly observed

www.biogeosciences.net/12/281/2015/ Biogeosciences, 12, 281–297, 2015
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Table 2. Parameter estimates and their standard errors for trend coefficients of CH4 fluxes (µgm−2 h−1) of the upland forest types (CT, VT,

MT, and OMT, Eq. 1), and for the forest–mire transitions (OMT+, KgK, and KR, Eq. 2). Both equations are functions of volumetric soil

moisture at 10 cm (%) and soil temperature at a depth of 5 cm (◦C).

Eq. (1) bi Group bi Group bi SE βi1 βi1 SE βi2 βi2 SE N RMSE

CT −39.345 −43.632 9.102 0.762a 0.299 −1.249 0.223 137 35.2

VT −26.213 143 25.1

MT −50.984 139 25.2

OMT −57.985 144 32.1

Eq. (2)

OMT+ −49.898 −50.248 7.507 0.638 0.105 −0.109b 0.226 139 22.3

KgK −48.216 146 17.9

KR −52.630 149 31.5

Eq. (2) soil temperature excluded from fitting

OMT+ −51.799 −52.466 6.341 0.660 0.099 139 22.3

KgK −50.404 146 17.9

KR −55.196 149 31.5

p < 0.001 for all parameters, except ap = 0.011, b p = 0.629. βi1 – soil moisture at 10 cm, βi2 – soil temperature at 5 cm.

Table 3. Parameter estimates and their standard errors for trend coefficients of CH4 fluxes (µgm−2 h−1) of the mires (VSR1, VSR2, Eq. 3).

Equation (3) is a function of water table depth (cm) and soil temperature at a depth of 5 cm (◦C).

Eq. (3) a0 a0 SE Topt Topt SE Ttol Ttol SE WTopt WTopt SE WTtol WTtol SE N RMSE

mires 1207.1 126.7 13.9 1.4 6.4 1.3 −18.0 2.2 16.6 2.8 324 656

VSR1 1570.3 155.1 13.0 0.8 5.8 0.8 −18.6 1.6 15.5 1.7 162 424

VSR2 801.3 190.8 16.6a 6.8 8.7b 4.5 −17.3c 5.3 20.7d 9.7 162 558

p values< 0.001, except ap = 0.016, bp = 0.053, cp = 0.002, dp = 0.035.

in uplands and in transitions, while mires typically showed

large positive CH4 fluxes associated with prevailing produc-

tion. The CH4 flux dynamics changed exponentially with

increasing levels of the ground water table from small up-

take to large emissions (Figs. 2, 3). The median CH4 fluxes

of uplands (CT, VT, MT, OMT), transitions (OMT+, KgK,

KR), and mires (VSR1, VSR2) varied from −38, −48,

and 392 µg m−2 h−1, respectively (Fig. 3b). Momentary CH4

fluxes of uplands and transitions ranged from −342 to

143 µg m−2 h−1, whereas in mires the fluxes ranged from

−12 to 6808 µg m−2 h−1 (Fig. 3b). The median CH4 fluxes

for one upland (VT) and all the transitions (OMT+, KgK,

KR) were found inside the range of the gas chromatograph

detection limits (MQLCH4
= 22 µg m−2 h−1). In forest–mire

transitions the ground water level in August 2005 increased

towards the surface and approached the levels typically found

in mires (Fig. 2b), but the soil water saturation in transitions

was not followed by CH4 emissions such as those found in

mires.

ANOVA showed that forest floor CH4 fluxes differed sig-

nificantly for the nine forest/mire types of the ecotone F(8,

1252) = 108, p < 0.001 and for the wet, typical, and dry

years F(2, 1252)= 10, p < 0.001. There was a significant in-

teraction between CH4 fluxes of forest/mire types and wet,

typical, and dry years F(16, 1252)= 5, p < 0.001. The post

hoc Tukey comparison of the nine forest/mire types indi-

cated that the mires had significantly higher CH4 fluxes than

the forests. Differences in means (M) and 95 % confidence

limits (CI) ranged from minimum VSR2–KgK (M = 481,

95 % CI [352, 610]) to maximum VSR1–OMT (M = 793,

95 % CI [668, 918]) at p< 0.001. Also the CH4 fluxes of

the mires were significantly different from each other VSR2–

VSR1 (M =−260, 95 % CI [−384, -137]), p < 0.001. Dif-

ferences between the years were significant at p < 0.001 for

dry–typical (M =−96, 95 % CI [−149, −43]) when CH4

fluxes of mires were highly reduced. The comparison of

mean CH4 fluxes of typical–wet (M = 51, 95 % CI [−6,

108]), p= 0.089, and dry–wet years did not show a signif-

icant difference (M =−45, 95 % CI [−111, 20]), p= 0.237.

Differences between the forest types (transitions, up-

lands) were not significant when analyzed together with the

CH4 fluxes of mires, but became significantly different F(6,

976)= 71, p < 0.001, when ANOVA was run without mires.

Though unlike the nine forest/mire type data set, for the
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Figure 2. The panels (a–c) show the monthly medians of environmental variables: (a) soil temperature at a depth of 5 cm, (b) ground water

level, and (c) volumetric soil moisture at 10 cm depth observed along the forest–mire ecotone during wet (2004), intermediate (2005), and

dry years (2006). The top–down arrangement of sites mimics the locations on the slope (see Fig. 1). The error bars represent the 25th and

75th percentiles.

Table 4. Parameter estimates and their standard errors for forest floor N2O fluxes (µgm−2 h−1) of all forest/mire types (CT–VSR2) in one

group Eq. (4). Eq. (4) is function of volumetric soil moisture at 5 cm (%) and soil temperature at a depth of 5 cm (◦C).

Eq. (4) a0 a0 SE Topt Topt SE Ttol Ttol SE N RMSE

forests/mires 4.034 0.635 11.268 0.183 1.414 0.181 400 36.2

p < 0.001 for all parameters.

group of uplands with transitions there was no difference be-

tween wet, typical, and dry years F(2, 976)= 1, p= 0.292, or

their interactions F(12, 976)= 1, p= 0.135. The mean CH4

uptake of the upland forests (−42.9 µg m−2 h−1) was for the

whole period significantly larger than the mean CH4 uptake

of the forest–mire transitions (−12.8 µg m−2 h−1) according

to Welch’s two sample t test t(994)= 15.56, p< 0.001. The

post hoc Tukey comparison of the differences in the mean

CH4 fluxes for 21 pairs of seven upland and transitional for-

est types was significant for 17 pairs at p < 0.001 and ranged

from OMT–VT (M =−35, 95 % CI [−45, −25]) to KR–

OMT (M = 51, 95 % CI [41, 61]). The post hoc Tukey com-

parisons showed non-significant p values for 4 of the 21 pairs

of CH4 fluxes of transitional and upland forest types (MT–CT

0.056, OMT+–VT 0.965, OMT–MT 0.431, and KR–KgK

0.999).

www.biogeosciences.net/12/281/2015/ Biogeosciences, 12, 281–297, 2015
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Figure 3. The box plots of forest floor CH4 fluxes (µg m−2 h−1) for each forest/mire type (a), and (b) for uplands (CT, VT, MT, OMT),

transitions (OMT+, KgK, KR), and mires (VSR1, VSR2) during the whole period. The left–right arrangement of sites mimics the locations

on the slope (see Fig. 1).

3.3 Factors controlling CH4 fluxes

The mean level of CH4 fluxes of upland and transitional

forests differed (Table 2, parameter group bi), though the

sensitivity response to environmental factors was similar

(Fig. 4). The largest part of the CH4 fluxes remained un-

explained with our models, as the proportion of explained

variance was relatively low for uplands (10 %) and transi-

tions (15 %) and slightly higher for mires (22 %). The mod-

eled CH4 flux response for the upland and transitional for-

est sites to soil moisture at 10 cm was nearly flat, although

the soil moisture parameter was significant (p= 0.011, Ta-

ble 2). In the transitional Oxalis-Myrtillus paludified forest

type OMT+, where the soil moisture at 10 cm ranged from

20 % (in the uplands) to over 70 % (in the mires), the mod-

eled CH4 flux response between dry and water-saturated soil

differed by 50 µg m−2 h−1. A stronger gradient than that in

the soil moisture was detected by modeling stronger temper-

ature responses of CH4 fluxes for the uplands and the nearly

flat response for the transitions (Fig. 4). The model parameter

to soil temperature at 5 cm in the uplands was highly signifi-

cant at p < 0.001, in contrast to transitions where the temper-

ature parameter was insignificant p= 0.629 (Table 2). In the

mires the observed range of water level during wet, typical,

and dry years spanned from the surface to a depth of 54 cm

and showed a sigmoidal response with lower CH4 fluxes to-

wards the extreme ends. The optimum water level for CH4

emissions was 18 cm below the surface with 16.6 cm toler-

ance which is deviation of water level up to 60 % of CH4

flux maximum (Fig. 4; p < 0.001, WTopt and WTtol in Ta-

ble 3). Optimum near-surface peat temperature for the CH4

emissions was found at 13.9 ◦C with 6.4 ◦C tolerance (Fig. 4;

p < 0.001, Topt and Ttol in Table 3).

3.4 N2O fluxes

During the typical and dry years the momentary forest

floor N2O fluxes of forest/mire types ranged from −107 to

248 µg m−2 h−1. The median N2O fluxes were similar for

the forest/mire types and ranged only from 0 to 6 µg m2 h−1

(Fig. 5). The median N2O fluxes of all forest/mire types were

found inside the range of the method quantification limits

(MQLN2O = 18 µg m−2 h−1). The N2O fluxes of the snow

on the ground period were significantly lower than the N2O

fluxes of the snowless period according to Welch’s two sam-

ple t test t(297)= 5.094, p< 0.001. Forest floor N2O fluxes

did not differ significantly for the nine forest/mire types

of the ecotone for the snowless periods F(8, 284)= 0.708,

p= 0.684. Though, the momentary N2O fluxes were sig-

nificantly different in typical and dry snowless seasons F(1,

284)= 6.157, p < 0.014. N2O fluxes were lower during dry

snowless seasons and a small increase was observed only in

one forest–mire transition (KR – spruce pine swamp) and in

one mire (VSR2 – tall sedge pine fen) (Fig. 6).

In general N2O fluxes were low and did not show clear

spatial differences in relation to increasing soil moisture from

Biogeosciences, 12, 281–297, 2015 www.biogeosciences.net/12/281/2015/
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r2 = 3.1 %
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r2 = 3.1 %
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r2 = 6.6 %
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Figure 4. Comparison of sensitivity of forest floor CH4 fluxes (µg m−2 h−1) to environmental factors for nine forest/mire types. Modeled

in the upper panels is CH4 flux response to soil moisture at 10 cm (uplands and transitions) or to water table depth (cm) (mires) for uplands

(CT, VT, MT, OMT) Eq. (1), for transitions (OMT+, KgK, KR) Eq. (2), and for mires (VSR1, VSR2) Eq. (3). Water table depth is indicated

as negative when it is above the soil surface. In the lower panels, CH4 flux response (Eqs. 1–3) is modeled to soil temperature at 5 cm of the

same forest/mires types and during the same period as in the upper panel. The CH4 flux response for each individual environmental factor is

illustrated so that the simulated value for each data point was recalculated by allowing only one factor at a time to vary while the other was

set to its mean level. To the adjusted CH4 flux responses (black points) the corresponding residual of each data point was added in order to

describe the unexplained model variation (gray points). The r2 (%) is the proportion of explained variance. The left–right arrangement of

sites mimics the locations on the slope (see Fig. 1).
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Figure 5. The box plot of forest floor N2O fluxes (µg m−2 h−1) for each forest/mire type (uplands – CT, VT, MT, OMT; transitions –

OMT+, KgK, KR; and mires – VSR1, VSR2) during the period including typical and dry years. The left–right arrangement of sites mimics

the locations on the slope (see Fig. 1).

xeric uplands to water-saturated mires, but the N2O fluxes

were lower in the dry than in the typical year. The post hoc

Tukey tests of means and 95 % confidence limits of N2O

fluxes for all pairs (except one) showed insignificant for-

est/mire type pairwise differences during the whole period

and also during the snowless periods of wet or dry years

(Fig. 6). The significant N2O flux difference for VSR2–OMT

www.biogeosciences.net/12/281/2015/ Biogeosciences, 12, 281–297, 2015
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Figure 6. The post hoc Tukey differences (error bars for 95 % confidence intervals) of mean N2O (µg m−2 h−1) fluxes from the forest floor

for the pairwise comparisons of forest/mire types (uplands – CT, VT, MT, OMT; transitions – OMT+, KgK, KR; and mires – VSR1, VSR2):

(a) the N2O flux differences over the whole period for a typical and dry year, (b) the N2O flux differences only for snowless seasons and

separately for typical and dry years.

in a dry year (M = 35, 95 % CI [3, 68], p= 0.02) was caused

by a small decrease in OMT and increase in VSR2 fluxes.

3.5 Factors controlling N2O fluxes

The sensitivity response of fluxes was weak in relation to

soil moisture at 5 cm and had a somewhat clearer and signif-

icant relation with soil temperature at 5 cm (p < 0.001, Ta-

ble 4, Fig. 7). The modeled Gaussian type response showed

optimum N2O production at 11.3 (◦C) soil temperature at a

depth of 5 cm with a very narrow temperature range increas-

ing from 7 ◦C and subsiding at 14 ◦C.

3.6 Effects of pH and soil properties on CH4 and N2O

flux

The site-specific momentary CH4 and N2O fluxes did not

show significant correlation with varying soil water pH (ex-

cept for one correlation coefficient r =−0.45, p= 0.02 on

MT for N2O and pH at 10 cm). Neither was any correlation

found between pH and momentary CH4 on the ecotone level.

However, when mires were excluded, Pearson correlation be-

tween momentary CH4 fluxes and soil water pH was signif-

icant (r =−0.32, p < 0.001). Mean values of summer 2005

CH4 of upland forests and forest–mire transition were nega-

tively correlated with mean pH (CH4 = 129.35–33.36× pH,

r2
= 0.49; Fig. 8a). The ecotone N2O fluxes were sig-

nificantly correlated with pH (r = 0.174, p= 0.004). The

mean N2O values of sites increased with mean pH (N2O=

−117.07+ 27.33× pH, r2
= 0.32; Fig. 8b). However, the

post hoc Tukey differences of mean N2O fluxes from the for-

est floor for the pairwise comparisons of forest/mire types

were not significant for 31 pairs and mean N2O flux dif-

ferences were significant only for 5 pairs (KgK–CT, VSR1–

KgK, VSR1–KR, VSR1–MT, VSR1–OMT, Fig. 9). We did

not find significant correlation between site-specific mean

CH4 and N2O flux and bulk density and/or C /N ratio.

4 Discussion

4.1 CH4 dynamics

The forest/mire types significantly differed in forest floor

CH4 fluxes and between wet, typical, and dry years. As ex-

pected, the largest difference was found between emissions

of mires and the small uptake of other forest types. However,

CH4 uptake also showed significant differences between the

Biogeosciences, 12, 281–297, 2015 www.biogeosciences.net/12/281/2015/
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Figure 7. Sensitivity of forest floor N2O fluxes (µg m−2 h−1) of

forest/mire types together with environmental factors: (a) N2O flux

response to soil moisture at 5 cm, and (b) N2O flux response to soil

temperature at 5 cm during the period including wet, typical, and

dry years. The N2O flux response form to each individual environ-

mental factor is illustrated so that the simulated value by Eq. (4)

for each data point was recalculated by allowing only one factor at

a time to vary, while the other was set to its mean level. To the ad-

justed N2O flux responses (black points) the corresponding residual

of each data point was added in order to describe the unexplained

model variation (gray points). The r2 (%) is the proportion of ex-

plained variance.

forest types on mineral soil (uplands) and organo-mineral

soil (transitions). Our study demonstrated that the CH4 flux

response to soil moisture changes with the relatively small

mesoscale levels of a forest–mire ecotone (450 m long tran-

sect) (Fig. 4). The CH4 flux sensitivity to soil moisture

showed a positive linear response to CH4 oxidation for the

drier soils of transitions and uplands. Alternatively, CH4

emission in mires showed a Gaussian form response to wa-

ter level depth with a reduction of the optimum under satu-

rated or dry peat conditions (Fig. 4). We have complemented

the few studies on forest–mire gradients (e.g., Moosavi and

Crill, 1997; Ullah et al., 2009; Ullah and Moore, 2011) and

have lowered the likelihood of forest–mire transitions being

biogeochemical hotspots of CH4 emissions during short-term

water level fluctuations.

The lack of an increase in CH4 emissions during increased

ground water levels in the transitions in our study could be at-

tributed more to the relatively slow response of CH4 produc-

ing bacteria than to the effectiveness of CH4 oxidation which

was reduced by a reduction in the aerated soil layer. Mäki-

ranta et al. (2009) showed that in forested peatlands the high-

est abundance of respiratory microbes could be found in the

zone around the average water level. It is also known that the

depth of maximum CH4 production and oxidation is strongly

related to 30-day average water level depth with time lag dif-

ferences between the drier and wetter microsites (Kettunen

et al., 1999). The duration of exceptionally increased high
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Figure 8. Scatterplot between site-specific mean pH and mean flux

(µgm−2 h−1) of (a) CH4 or (b) N2O of summer with intermediate

moisture over the period of soil water sampling campaign (July–

September 2005). Error bars show standard error. The CH4 error

bars for VSR1 and VSR2 are not shown.

water levels was probably too short for CH4 producing bac-

teria to relocate and/or adapt to water-saturated conditions.

The methane production potential of mire varies in relation

to methanogen communities, substrate availability, pH, and

temperature (Juottonen et al., 2005, Juottonen et al., 2008).

Unlike open mires, in drier conditions (similar to our forest–

mire margin) decreases in the methanogen community are

associated with low CH4 production potential and with low

emissions (Yrjälä et al., 2011). In the forest–mire margin, a

relatively small population of methanotrophic microbes cou-

pled with Sphagnum mosses and low CH4 oxidation poten-

tial, related to low CH4 concentrations in moss layer, could

indicate low production potential (Larmola et al., 2010). It

is known that water level depth is a major control of CH4

oxidation, and that Sphagnum species originally not oxi-

dising CH4 need from several days to a month to activate

methanotrophs through a water phase (Larmola et al., 2010;

Putkinen et al., 2012).

www.biogeosciences.net/12/281/2015/ Biogeosciences, 12, 281–297, 2015
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Figure 9. The post hoc Tukey differences (error bars for 95 % con-

fidence intervals) of mean N2O (µgm−2 h−1) fluxes from the forest

floor for the pairwise comparisons of forest/mire types (uplands –

CT, VT, MT, OMT; transitions – OMT+, KgK, KR; and mires –

VSR1, VSR2) over the period of the soil water sampling campaign

(July–September 2005).

Temporally water-saturated soil layers of pristine forest–

mire transitions had low CH4 emissions possibly due to low

pH, imposing physiological restrictions on soil microbial

communities. Methanogenic activity in water-saturated or-

ganic soils can be reduced by high acidity (e.g., Ye et al.,

2012). Activity of methanotrophic microbes is also pH de-

pendent with optimum above 5 (Danilova and Dedysh, 2013;

Saari et al., 2004). Our forest–mire transitions had mean pH

below 5 and demonstrated lower net CH4 uptake rates in

comparison to upland forests on mineral soils (Fig. 8), which

is in line with Saari et al. (2004). In spite of positive pH

and CH4 correlation found for the group of transitions and

uplands together, the net CH4 sink of upland well-drained

mineral soil sites was primarily determined by high oxy-

gen content. Small momentary CH4 emissions (Supplement

Fig. S3a) observed in forest–mire transitions also indicated

potential for occasionally higher production than oxidation.

Beside differences in microsite soil water saturation, pH,

and microbial communities, also plant communities (e.g.,

Saarnio et al., 1997; Strom et al., 2003; Riutta et al., 2007;

Dorodnikov et al., 2011) play an important role in explain-

ing net CH4 emissions. In the forest–mire margin sites (KR

and KgK) vascular plants (Fig. 1c) contributed to net for-

est floor CH4 emissions (Fig. S3), if methane production oc-

casionally increased. It is known that transport of recently

photosynthesized carbon downwards to plant roots feeds mi-

crobial methane production (Alm et al., 1997; Strom et al.,

2003; Dorodnikov et al., 2011). Aerenchyma of vascular

plants transports most of produced CH4 from peat to the at-

mosphere without oxidation in the acrotelm, and increases

net CH4 emissions (Hornibrook et al., 2009, Dorodnikov et

al., 2011). A smaller amount of produced methane that is

transported by pore water diffusion is efficiently oxidized by

methanotrophs in the aerobic layer of peat and Sphagnum

mosses (Hornibrook et al., 2009; Larmola et al., 2010).

Small CH4 emissions as observed in relatively dry Scots

pine dominated forests (VT – Vaccinium vitis-idaea type)

(Fig. 3) with sandy Podzols soil and ground water depths

around 2 m, have been occasionally found in mineral soil

forests in other studies. The occasional mineral soil CH4 ef-

fluxes suggested that plants’ deepest roots transport CH4 via

the transpiration stream (Megonigal and Guenther 2008). Ul-

lah et al., (2009) found that Spruce forest soils produced CH4

only during the spring thaw season but later under drier sum-

mer conditions soils switched to CH4 consumption. In our

study the rare occurrence of small CH4 emissions from for-

est soils differed between forest types and cannot only be

attributed to increased soil moisture levels of microsites or

transport from deep ground water sources. Small CH4 emis-

sions could be also partly attributed to the random noise in

measurements. However, all the data showed a significant

reduction of CH4 uptake with increasing soil moisture at

10 cm, this may be associated with oxidation processes.

The form of dependence of CH4 flux on soil moisture is

better known from soil incubation studies (Pihlatie et al.,

2004; Ullah et al., 2007) than from field studies, as field soil

moisture ranges may be narrow (e.g., Nakamo et al., 2004).

In order to describe the sensitivity of CH4 uptake to mois-

ture in the field we need a large amount of data covering a

wide range of soil conditions (e.g., Hashimoto et al., 2011).

In our study soil moisture varied between xeric and satu-

rated conditions both spatially along the ecotone and tempo-

rally between years. Temporal soil water saturation in transi-

tional forest–mire sites rather reduced CH4 oxidations than

promoted such CH4 emissions as found in nearby perma-

nently saturated mires. Beside the sensitivity of CH4 fluxes

to moisture we also observed sensitivity to soil temperature

(Fig. 4) possibly also reflecting the role of soil physiochem-

ical properties and/or the activity of methanogens. The lin-

early increasing CH4 oxidation rates with temperature in up-
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land forest types could reflect the importance of soil phys-

iochemical properties, whereas the Gaussian form may also

reflect a biological driven response in mires.

In our upland forests the role of soil physiochemical and

microbiological drivers may have contributed to the fact that

the temperature and moisture explained just 10 % of the vari-

ation. Although our mean CH4 data did not show signifi-

cant correlations with bulk density, the porous organic hori-

zon is known to enable larger diffusion and CH4 oxidation

(Nakamo et al., 2004; Ullah and Moore 2011). It was diffi-

cult to assess the differences in sensitivity of CH4 oxidation

because of poor MQL and low fluxes of CH4 oxidation. The

absolute levels of the temperature effect on CH4 fluxes in

forest–mire transitions caused part of the signal to be mixed

with variable sources of sampling errors and gas chromato-

graph precision errors. Though, in transitions both soil phys-

iochemical and microbiological drivers may be important

for CH4 oxidations, as our forest–mire transitions showed a

significant relation to soil moisture but not to temperature.

The weak response of CH4 oxidation to temperature was in

contrast to the strong response to moisture and bulk density

found in forests growing on mineral soils (Hashimoto et al.,

2011). However, Nakamo et al. (2004) reported a clear rela-

tion with temperature but not with moisture for boreal birch

forest (similar to our KR – spruce pine swamp).

In mires, the form of CH4 sensitivity to temperature and

water table depth may be also determined by differences in

pH, and the composition of microbial and plant functional

communities (Bubier et al., 1995; Jaatinen et al., 2004; Juot-

tonen et al., 2005, 2008; Larmola et al., 2010; Riutta et

al., 2007; Saarnio et al., 1997; Saari et al., 2004; Yrjälä et

al., 2011). The CH4 emissions in VSR1 were larger than in

VSR2 (Fig. 4). Differences in pH could favor methanogen

activity in less acid fen (Jouttonen et al., 2005; Yrjälä et

al., 2011; Ye et al., 2012). Different coverage of vascular

aerenchymous plants and Sphagnum mosses between VSR1

and VSR2 could affect site-specific CH4 production and ox-

idation potentials. For example in VSR1 the water level was

closer to the surface, and the lawn microsites had abundance

of Menyanthes species (Fig. 1c), which are known to me-

diate higher CH4 transport (Bubier et al., 1995; Macdon-

ald et al., 1998), whereas in VSR2 Menyanthes species

was absent. Shallower form of CH4 sensitivity to water ta-

ble in a hummock type fen VSR2 than in lawn type of fen

VSR1 could resulted from differences in plant mediated CH4

emissions (e.g., Riutta et al., 2007; Hornibrook et al., 2009;

Dorodnikov et al., 2011) or CH4 oxidation potential between

Sphagnum species (Larmola et al., 2010). For example in the

study by Saarnio et al. (1997) the CH4 flux response to wa-

ter level would be exponential if it accounted only for emis-

sions from hummock and Carex lawn microsites, but the re-

sponse was Gaussian for flark, hummock, Eriophorum lawn

and Carex lawn microsites taken together.

4.2 N2O dynamics

The momentary N2O fluxes in the range from −107 to 248

(µg m−2 h−1) and median emissions close to 0 (µg m−2 h−1)

for forest/mire types (Fig. 5) were in the proximity of val-

ues for soils in similar climates (Von Arnold et al., 2005a, b,

Pihlatie et al., 2007; Matson et al., 2009; Ullah et al., 2009;

Ojanen et al., 2010). Forest floor N2O fluxes did not dif-

fer significantly for the nine forest/mire types of the ecotone

p= 0.637 for the whole period from May 2005 to Septem-

ber 2006, probably due to the low nitrification potential of

boreal forests in natural conditions (Regina et al., 1996).

In contrast to our results, Ullah and Moore (2009, 2011)

found that soil drainage and dominant tree species strongly

control net nitrification rates, and that N2O emissions from

poorly drained soils can be three times larger than those from

well-drained soils due to slower denitrification than nitrifi-

cation activity. Statistically significant differences were also

found between drained and undrained forests growing on

organic soils and between evergreens and deciduous plants

(Von Arnold et al., 2005a, b).

Soil incubation studies under various moisture and tem-

perature regimes (Pihlatie et al., 2004; Szukics et al., 2010)

imply that our higher forest floor N2O emissions during typi-

cal summer 2005 than during dry summer 2006 (Supplement

Fig. 3b) were probably induced by stimulated N turnover

through the soil wetting and drying cycle under favorable

temperature. During conditions with intermediate moisture

(July–September 2005) we also observed mean N2O flux

of dry pine forest significantly larger than that of paludified

spruce forest (larger CT than KgK), whereas mean N2O flux

of water-saturated mire was larger than four sites (VSR1–

KgK, VSR1–KR, VSR1–MT, VSR1–OMT) (Figs. 8, 9).

Therefore, during fluctuating soil moisture, we could expect

increased N2O fluxes of a normally xeric (CT) and water-

saturated (VSR1) site due to stimulated nitrification (CT in

rewetting phase, and VSR1 in drying phase). During July–

September 2005, CT and VSR1 sites were also least acid

along the ecotone which could favor nitrification and conse-

quently N2O emissions through denitrification (Regina et al.,

1996; Ste-Marie and Pareé, 1999; Paavolainen et al., 2000).

These studies reported that the increase of pH by rewetting

could initiate nitrification. In contrast to less acid CT and

VSR1, the more acid forest–mire transitions with the widest

range of water level fluctuations ranked into a group of sites

with lower N2O fluxes. Highly acid conditions prevent de-

velopment of nitrifiers, substrate affinity, and nitrification,

even if ammonium is available (Ste-Marie and Pareé, 1999;

Paavolainen et al., 2000). The fact that net nitrification of

acid sensitive nitrifiers positively increases with forest floor

pH, whereas acidification reduces it, suggests that nitrifiers

in our sites were acid sensitive and not acid tolerant. The

lack of nitrate renders denitrification potential to be negligi-

ble. Although, if nitrate were present, low pH would enhance

N2O emissions due to inhibiting di-nitrogenoxide reductase
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and increasing N2O /N2 ratio of denitrification (e.g., Wes-

lien et al., 2009).

In pristine mires nitrification positively depended on pH

and negatively on water level (Regina et al., 1996) in sup-

ply of nitrate for denitrification, as the main source of N2O

emissions (Regina et al., 1996; Nykänen et al., 1995; Wray et

al., 2007). Thus, during drying–rewetting periods as in July–

September 2005, our sites could initiate short-term signif-

icant differences, but for the whole measurement period the

lack of a statistically significant difference in N2O fluxes was

probably due to low nitrification potential. Generally, low

pH and high C /N ratios of our forest floors suggest con-

ditions of low nitrification potential. Thus, the lack of a sta-

tistically significant difference in N2O fluxes was probably

due to low nitrification potential. Other reasons could be the

low field sampling frequency and relatively high noise in the

data (MQL compared to low fluxes). Measuring three mi-

crosites per site could lead to missing some peak N2O emis-

sion events due to a large microscale spatial variation (Von

Arnold et al., 2005a). With our weekly or bi-weekly sam-

pling frequency we could not identify larger microsite spe-

cific peak events possibly occurring after N was mobilized

from, e.g., fast decomposition of deciduous foliage during

the drought related early peak in litterfall or during sudden

soil freeze–thaw cycles (Pihlatie et al., 2007). However, dur-

ing the active growing season these events might be rare in

typical boreal conditions where plants are adapted to a rapid

uptake of limited rates of soil N mineralization (Hikosaka,

2003; Korhonen et al., 2013; Lupi et al., 2013).

Several studies (Martikainen et al., 1995; Regina et al.,

1996) reported that peatlands in a pristine state showed small

N2O emissions, but when drained, nitrification rates were en-

hanced depending on nutrient status (a large increase for rich

sites and no increase for poor sites). The limited increase in

N2O emissions during the summer drought in our mires may

be therefore attributed to low nutrient levels, a low supply of

nitrate and/or low nitrification potential. Relatively low fertil-

ity may also be expected to limit the N2O emissions during

the dry season of our forests and forest–mire transitions as

the N2O emissions are also known to correlate with site fer-

tility, e.g., expressed as C /N ratio (Klemedtsson et al., 2005;

Ojanen et al., 2010; Hashimoto et al., 2011).

The N2O fluxes of forest/mire types fitted by nonlinear re-

gression models showed positive linear response to soil mois-

ture at a depth of 5 cm and significant Gaussian type response

to temperature at depths of 5 cm (Table 4, Fig. 7). How-

ever, the residuals of the moisture and temperature model

were large (Fig. 7) and r2 was only 10 %. Luo et al. (2012)

demonstrated for temperate forests that N2O emissions de-

pended nonlinearly on the soil moisture and positively on soil

temperature. In our study, the weak linear response of soil

moisture to N2O fluxes could be an artifact of fitting several

N2O processes of different sensitivity to different forest/mire

types. For example in well-drained uplands the N2O fluxes

may be mainly due to processes of ammonification and nitri-

fication, while in mires nitrification in the drier surface layer

may be coupled with denitrification in deeper water-saturated

layers (Ambus et al., 2006; Regina et al., 1996). The soil

moisture and temperature from deeper layers did not signifi-

cantly explain the N2O fluxes (results not shown). An active

depth of 5 cm corresponding to the top of the organic layer

is in agreement with Pihlatie et al. (2007) who demonstrated

that N turnover in poor boreal forest soil takes place in the

litter layer and that N2O emissions originate mainly from the

top soil. The N2O production in our study increased with ris-

ing soil temperature of the humus layer from 7 ◦C typically

found after the soil thawed during spring warming and in au-

tumn during soil cooling. These could be the periods when

the nitrification potential increased; in spring probably due

to mobilization of nitrogen during freeze–thaw cycles and in

autumn probably due to mobilization of nitrogen from the

quickly decomposing foliar litterfall (Pihlatie et al., 2007,

2010; Luo et al., 2012).

5 Conclusions

The CH4 fluxes of forest–mire ecotone were significantly

different not only between sources or sink type forests but

also between sinks (upland and transitional types) and be-

tween sources (mires). The forest–mire transitions showed

CH4 oxidation rather than emission with very small sensi-

tivity to wet and dry events. The N2O fluxes of forest mire

types were generally low. Despite small N2O peaks in spring

and autumn, the N2O fluxes showed low sensitivity to soil

moisture probably due to poor soil nitrogen content and the

low nitrification potential of the forest/mire types in pristine

conditions. In spite of the potential of pristine forest–mire

transitions to represent biogeochemical hotspots in the land-

scape, the CH4 and N2O flux levels in the transitions changed

minimally during extremely large range of weather condi-

tions. Our pristine forest–mire transitions did not act as bio-

geochemical hotspots for CH4 and N2O emissions. There-

fore, when making attempts to upscale boreal landscape car-

bon and nitrogen cycles, the organo-mineral soils of pristine

forest–mire transitions should be regarded as CH4 sinks and

minor N2O sources rather than having the peak emissions on

the landscape level.

The Supplement related to this article is available online

at doi:10.5194/bg-12-281-2015-supplement.
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296 B. Ťupek et al.: CH4 and N2O dynamics in the boreal forest–mire ecotone

ern wetland; response to temperature, water table and transport,

Atmos. Environ., 32, 3219–3227, 1998.

Mäkiranta, P., Laiho, R., Fritze, H., Hytönen, J., Laine, J., and

Minkkinen, K.: Indirect regulation of heterotrophic peat soil res-

piration by water level via microbial community structure and

temperature sensitivity, Soil Biol. Biochem., 41, 695–703, 2009.

Martikainen, P. J., Nykanen, H., Crill, P., and Silvola, J.: Effect of a

lowered water table on nitrous oxide fluxes from northern peat-

lands, Nature, 366, 51–53, 1993.

Martikainen, P. J., Nykänen, H., Alm, J., and Silvola, J.: Change in

fluxes of carbon dioxide, methane and nitrous oxide due to forest

drainage of mire sites of different trophy, Plant Soil, 168/169,

571–577, 1995.

Matson, A., Pennock, D., and Bedard-Haughn A.: Methane and ni-

trous oxide emissions from mature forest stands in the boreal for-

est, Saskatchewan, Canada, For. Ecol. Manage., 258, 1073–1083,

2009.

McClain, M. E., Boyer, E. W.,Dent, C. L., Gergel, S. E., Grimm,

N. B., Groffman, P. M., Hart, S. C., Harvey, J. W., Johnston, C.

A., Mayorga, E., McDowell, W. H., and Pinay, G.: Biogeochem-

ical hot spots and hot moments at the interface of terrestrial and

aquatic ecosystems, Ecosystems 6, 301–312, 2003.

Megonigal, J. P and Guenther, A. B.: Methane emissions from

upland forest soils and vegetation, Tree Physiol., 28, 491–498,

2008.

Moosavi, S. C. and Crill, P. M.: Controls on CH4 and CO2 emis-

sions along two moisture gradients in the canadian boreal zone,

J.Geophys.Res., 102, 29261–29277, 1997.

Nakano, T., Tnoue, G., and Fukuda, M.: Methane consumption and

soil respiration by a birch forest soil in West Siberia, Tellus B,

56, 223–229, 2004.

Nykänen, H., Alm, J., Lang, K., Silvola, J., and Martikainen, P.:

Emissions of CH4, N2O and CO2 from a virgin fen and a fen

drained for grassland in Finland, J. Biogeogr., 22, 351–357,

1995.

Nykänen, H., Alm, J., Silvola, J., Tolonen, K., and Martikainen, P.

J.: Methane fluxes on boreal peatlands of different fertility and

the effect of long-term experimental lowering of the water table

on flux rates, Global Biogeochem. Cy., 12, 53–69, 1998.

Ojanen, P., Minkkinen, K., and Alm, J.: Soil–atmosphere CO2, CH4

and N2O fluxes in boreal forestry-drained peatlands, Forest Ecol.

Manage., 260, 411–421, 2010.

Paavolainen, L., Fox, M., and Smolander, A.: Nitrification and den-

itrification in forest soil subjected to sprinkling infiltration, Soil

Biol. Biochem., 32, 669–678, 2000.

Pihlatie, M., Syväsalo, E., Simojoki, A., Esala, M., and Regina, K.:

Contribution of nitrification and denitrification to N2O produc-

tion in peat, clay and loamy sand soils under different soil mois-

ture conditions, Nutr. Cy. Agroecosyst., 70, 135–141, 2004.

Pihlatie, M., Pumpanen, J., Rinne, J., Ilvesniemi, H., Simojoki, A.,

Hari, P., and Vesala, T.: Gas concentration driven fluxes of nitrous

oxide and carbon dioxide in boreal forest soil, Tellus B, 59, 458–

469, 2007.

Pihlatie, M. K., Kiese, R., Brüggemann, N., Butterbach-Bahl, K.,

Kieloaho, A.-J., Laurila, T., Lohila, A., Mammarella, I., Minkki-

nen, K., Penttilä, T., Schönborn, J., and Vesala, T.: Greenhouse

gas fluxes in a drained peatland forest during spring frost-thaw

event, Biogeosciences, 7, 1715–1727, doi:10.5194/bg-7-1715-

2010, 2010.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and the R Devel-

opment Core Team: nlme: Linear and Nonlinear Mixed Effects

Models, R package version, 3.1, 113, http://cran.r-project.org/

web/packages/nlme/nlme.pdf, 2013.

Putkinen, A., Larmola, T., Tuomivirta, T., Siljanen, H.M.P.,

Bodrossy, L., Tuittila, E.-S., and Fritze, H.: Water disper-

sal of methanotrophic bacteria maintains functional methane

oxidation in Sphagnum mosses, Front. Microbio., 3, 15,

doi:10.3389/fmicb.2012.00015, 2012.

R Core Team, R: A language and environment for statistical com-

puting, R Foundation for Statistical Computing, Vienna, Austria,

http://www.R-project.org/, 2013.

Regina, K., Nykänen, H., Silvola, J., and Martikainen, P.: Fluxes of

nitrous oxide from boreal peatlands as affected by peatland type,

water table level and nitrification capacity, Biogeochemistry, 35,

401–418, 1996.

Riutta, T., Laine, J., Aurela, M., Rinne, J., Vesala, T., Laurila, T.,

Haapanala, S., Pihlatie, M., and Tuittila, E.: Spatial variation in

plant community functions regulates carbon gas dynamics in a

boreal fen ecosystem, Tellus B, 59, 838–852, 2007.
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