80 research outputs found
Optimum single-gap solar cells for missions to Mercury
The power supply for space probes is usually based on photovoltaic (PV) systems. The first solar cells used in these systems were single-gap solar cells fabricated with Si and GaAs. Later on, multijunction solar cells (MJSC) based on III–V semiconductors
were developed because of their higher efficiency and tolerance to a radiation environment [1]. All these solar cells have been based on semiconductors that fulfill the needs of most near-Earth missions. However, those same semiconductors fail to meet the needs of some other missions involving harsh environments such as high-intensity high-temperature (HIHT) environments [2]. In this work, we investigate which semiconductor material is optimum to implement single-gap solar cells for missions to Mercury, where HIHT conditions are expected.
Because solar cell efficiency decreases as temperature increases [3], achieving high-efficiency photovoltaic conversion at HIHT conditions is a big challenge. Previous works have pointed out the need of using wide-bandgap semiconductors to reach this goal [4,5]. In this context, we will study the potential of solar cells based on AlxGa1−xAs, a well-known semiconductor whose physical properties have been extensively investigated. The limiting efficiency of these solar cells performing in near-Mercury missions will be calculated to determine the optimum composition for AlxGa1−xAs
Light-trapping in photon enhanced thermionic emitters
A series of photonic crystal structures are optimized for a photon enhanced thermionic emitter. With realistic parameter values to describe a p-type GaAs device we find an efficiency above 10%. The light-trapping structures increases the performance by 2% over an optimal bilayer anti-reflective coating. We find a device efficiency very close to the case of a Lambertian absorber, but below its maximum performance. To prevent an efficiency below 10% the vacuum gap must be dimensioned according to the concentration factor of the solar irradiance
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
A comparison between the implementations of risk regulations in the Netherlands and France under the framework of the EC SEVESO II directive
International audienceThe SEVESO II directive has created a common framework for the European state members for the implementation of risk management strategies that require the introduction of various dimensions ranging from technical to organisational ones. Local regulations in countries have however diverse histories and philosophies. Some regulations include the calculation of probabilities (to define risk contours for Land Use Planning purposes) and some others do not (yet!). When they do not, deterministic scenarios are applied for land use planning, implying the calculation of the most severe potential accident or some negotiated/reference scenarios (like in the 90s in France). This is not without putting some constraints on the companies, on the local control authorities and on the urban planners from the cities. The Netherlands and France have two different traditions, respectively a probabilistic and a deterministic one. The aim of the paper is to compare how these two traditions, under the same SEVESO II directive, proceeded to implement the safety strategies required by the directive. Several dimensions will be compared in order to understand the current positions of the two countries and how this evolved after the two disasters of Enschede (2000) and Toulouse (2001). This will include the general organization, the main practices in terms of land use planning (past and future), the type of risk assessment and the number of SEVESO sites in order to put into context the two country's resources and constraints, and then appraise common points and differences
Critical assessment of three high performance liquid chromatography analytical methods for food carotenoid quantification
Three sets of extraction/saponification/HPLC conditions for food carotenoid quantification were technically and economically compared. Samples were analysed for carotenoids α-carotene, β-carotene, β-cryptoxanthin, lutein, lycopene, and zeaxanthin. All methods demonstrated good performance in the analysis of a composite food standard reference material for the analytes they are applicable to. Methods using two serial connected C18 columns and a mobile phase based on acetonitrile, achieved a better carotenoid separation than the method using a mobile phase based on methanol and one C18-column. Carotenoids from leafy green vegetable matrices appeared to be better extracted with a mixture of methanol and tetrahydrofuran than with tetrahydrofuran alone. Costs of carotenoid determination in foods were lower for the method with mobile phase based on methanol. However for some food matrices and in the case of E–Z isomer separations, this was not technically satisfactory. Food extraction with methanol and tetrahydrofuran with direct evaporation of these solvents, and saponification (when needed) using pyrogallol as antioxidant, combined with a HPLC system using a slight gradient mobile phase based on acetonitrile and a stationary phase composed by two serial connected C18 columns was the most technically and economically favourable method
- …