8 research outputs found

    Loss of MICOS complex integrity and mitochondrial damage, but not TDP-43 mitochondrial localisation, are likely associated with severity of CHCHD10-related diseases

    Get PDF
    Following the involvement of CHCHD10 in FrontoTemporal-Dementia-Amyotrophic Lateral Sclerosis (FTD-ALS) clinical spectrum, a founder mutation (p.Gly66Val) in the same gene was identified in Finnish families with late onset spinal motor neuronopathy (SMAJ). SMAJ is a slowly progressive form of spinal muscular atrophy with a life expectancy within normal range. In order to understand why the p.Ser59Leu mutation, responsible for severe FTD-ALS, and the p.Gly66Val mutation could lead to different levels of severity, we compared their effects in patient cells. Unlike affected individuals bearing the p.Ser59Leu mutation, patients presenting with SMAJ phenotype have neither mitochondrial myopathy nor mtDNA instability. The expression of CHCHD10(S59L) mutant allele leads to disassembly of mitochondrial contact site and cristae organizing system (MICOS) with mitochondria] dysfunction and loss of cristae in patient fibroblasts. We also show that G66V fibroblasts do not display the loss of MICOS complex integrity and mitochondrial damage found in S59L cells. However, S59L and G66V fibroblasts show comparable accumulation of phosphorylated mitochondrial TDP-43 suggesting that the severity of phenotype and mitochondrial damage do not depend on mitochondrial TDP-43 localization. The expression of the CHCHD10(G66V) allele is responsible for mitochondrial network fragmentation and decreased sensitivity towards apoptotic stimuli, but with a less severe effect than that found in cells expressing the CHCHD10(S59L) allele. Taken together, our data show that cellular phenotypes associated with p.Ser59Leu and p.Gly66Val mutations in CHCHD10 are different; loss of MICOS complex integrity and mitochondrial dysfunction, but not TDP-43 mitochondrial localization, being likely essential to develop a severe motor neuron disease.Peer reviewe

    Prevalence of rare mitochondrial DNA mutations in mitochondrial disorders

    Get PDF
    International audienceBACKGROUND: Mitochondrial DNA (mtDNA) diseases are rare disorders whose prevalence is estimated around 1 in 5000. Patients are usually tested only for deletions and for common mutations of mtDNA which account for 5-40% of cases, depending on the study. However, the prevalence of rare mtDNA mutations is not known. METHODS: We analysed the whole mtDNA in a cohort of 743 patients suspected of manifesting a mitochondrial disease, after excluding deletions and common mutations. Both heteroplasmic and homoplasmic variants were identified using two complementary strategies (Surveyor and MitoChip). Multiple correspondence analyses followed by hierarchical ascendant cluster process were used to explore relationships between clinical spectrum, age at onset and localisation of mutations. RESULTS: 7.4% of deleterious mutations and 22.4% of novel putative mutations were identified. Pathogenic heteroplasmic mutations were more frequent than homoplasmic mutations (4.6% vs 2.8%). Patients carrying deleterious mutations showed symptoms before 16 years of age in 67% of cases. Early onset disease (&lt;1 year) was significantly associated with mutations in protein coding genes (mainly in complex I) while late onset disorders (&gt;16 years) were associated with mutations in tRNA genes. MTND5 and MTND6 genes were identified as 'hotspots' of mutations, with Leigh syndrome accounting for the large majority of associated phenotypes. CONCLUSIONS: Rare mitochondrial DNA mutations probably account for more than 7.4% of patients with respiratory chain deficiency. This study shows that a comprehensive analysis of mtDNA is essential, and should include young children, for an accurate diagnosis that is now accessible with the development of next generation sequencing technology.</p

    Whole genome paired-end sequencing elucidates functional and phenotypic consequences of balanced chromosomal rearrangement in patients with developmental disorders

    No full text
    International audienc

    An international classification of inherited metabolic disorders (ICIMD)

    No full text
    Several initiatives at establishing a classification of inherited metabolic disorders have been published previously, some focusing on pathomechanisms, others on clinical manifestations, while yet another attempted a simplified approach of a comprehensive nosology. Some of these classifications suffered from shortcomings, such as lack of a mechanism for continuous update in light of a rapidly evolving field, or lack of widespread input from the metabolic community at large. Our classification-the International Classification of Inherited Metabolic Disorders, or International Classification of Inborn Metabolic Disorders (ICIMD)-includes 1450 disorders, and differs from prior approaches in that it benefited from input by a large number of experts in the field, and was endorsed by major metabolic societies around the globe. Several criteria such as pathway involvement and pathomechanisms were considered. The main purpose of the hierarchical, group-based approach of the ICIMD is an improved understanding of the interconnections between many individual conditions that may share functional, clinical, and diagnostic features. The ICIMD aims to include any primary genetic condition in which alteration of a biochemical pathway is intrinsic to specific biochemical, clinical, and/or pathophysiological features. As new disorders are discovered, we will seek the opinion of experts in the advisory board prior to inclusion in the appropriate group of the ICIMD, thus guaranteeing the continuing relevance of this classification via regular curation and expert advice
    corecore