502 research outputs found

    Magnetic domain structure and dynamics in interacting ferromagnetic stacks with perpendicular anisotropy

    Full text link
    The time and field dependence of the magnetic domain structure at magnetization reversal were investigated by Kerr microscopy in interacting ferromagnetic Co/Pt multilayers with perpendicular anisotropy. Large local inhomogeneous magnetostatic fields favor mirroring domain structures and domain decoration by rings of opposite magnetization. The long range nature of these magnetostatic interactions gives rise to ultra-slow dynamics even in zero applied field, i.e. it affects the long time domain stability. Due to this additionnal interaction field, the magnetization reversal under short magnetic field pulses differs markedly from the well-known slow dynamic behavior. Namely, in high field, the magnetization of the coupled harder layer has been observed to reverse more rapidly by domain wall motion than the softer layer alone.Comment: 42 pages including 17 figures. submitted to JA

    Current Induced Fingering Instability in Magnetic Domain Walls

    Get PDF
    The shape instability of magnetic domain walls under current is investigated in a ferromagnetic (Ga,Mn)(As,P) film with perpendicular anisotropy. Domain wall motion is driven by the spin transfer torque mechanism. A current density gradient is found either to stabilize domains with walls perpendicular to current lines or to produce finger-like patterns, depending on the domain wall motion direction. The instability mechanism is shown to result from the non-adiabatic contribution of the spin transfer torque mechanism.Comment: 5 pages, 3 figures + supplementary material

    MIPAS detection of cloud and aerosol particle occurrence in the UTLS with comparison to HIRDLS and CALIOP

    Get PDF
    Satellite infrared emission instruments require efficient systems that can separate and flag observations which are affected by clouds and aerosols. This paper investigates the identification of cloud and aerosols from infrared, limb sounding spectra that were recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), a high spectral resolution Fourier transform spectrometer on the European Space Agency's (ESA) ENVISAT (Now inoperative since April 2012 due to loss of contact). Specifically, the performance of an existing cloud and aerosol particle detection method is simulated with a radiative transfer model in order to establish, for the first time, confident detection limits for particle presence in the atmosphere from MIPAS data. The newly established thresholds improve confidence in the ability to detect particle injection events, plume transport in the upper troposphere and lower stratosphere (UTLS) and better characterise cloud distributions utilising MIPAS spectra. The method also provides a fast front-end detection system for the MIPClouds processor; a processor designed for the retrieval of macro- and microphysical cloud properties from the MIPAS data. <br><br> It is shown that across much of the stratosphere, the threshold for the standard cloud index in band A is 5.0 although threshold values of over 6.0 occur in restricted regimes. Polar regions show a surprising degree of uncertainty at altitudes above 20 km, potentially due to changing stratospheric trace gas concentrations in polar vortex conditions and poor signal-to-noise due to cold atmospheric temperatures. The optimised thresholds of this study can be used for much of the time, but time/composition-dependent thresholds are recommended for MIPAS data for the strongly perturbed polar stratosphere. In the UT, a threshold of 5.0 applies at 12 km and above but decreases rapidly at lower altitudes. The new thresholds are shown to allow much more sensitive detection of particle distributions in the UTLS, with extinction detection limits above 13 km often better than 10<sup>−4</sup> km<sup>−1</sup>, with values approaching 10<sup>−5</sup> km<sup>−1</sup> in some cases. <br><br> Comparisons of the new MIPAS results with cloud data from HIRDLS and CALIOP, outside of the poles, establish a good agreement in distributions (cloud and aerosol top heights and occurrence frequencies) with an offset between MIPAS and the other instruments of 0.5 km to 1 km between 12 km and 20 km, consistent with vertical oversampling of extended cloud layers within the MIPAS field of view. We conclude that infrared limb sounders provide a very consistent picture of particles in the UTLS, allowing detection limits which are consistent with the lidar observations. Investigations of MIPAS data for the Mount Kasatochi volcanic eruption on the Aleutian Islands and the Black Saturday fires in Australia are used to exemplify how useful MIPAS limb sounding data were for monitoring aerosol injections into the UTLS. It is shown that the new thresholds allowed such events to be much more effectively derived from MIPAS with detection limits for these case studies of 1 × 10<sup>−5</sup> km<sup>−1</sup> at a wavelength of 12 μm

    Overshooting of Clean Tropospheric Air in the Tropical Lower Stratosphere as Seen by the CALIPSO Lidar

    Get PDF
    The evolution of aerosols in the tropical upper troposphere/lower stratosphere between June 2006 and October 2009 is examined using the observations of the space borne CALIOP lidar aboard the CALIPSO satellite. Superimposed on several volcanic plumes and soot from an extreme biomass-burning event in 2009, the measurements reveal the existence of fast cleansing episodes of the lower stratosphere to altitudes as high as 20 km. The cleansing of the full 14-20km layer takes place within 1-4 months. Its coincidence with the maximum of convective activity in the southern tropics, suggests that the cleansing is the result of a large number of overshooting towers, injecting aerosol-poor tropospheric air into the lower stratosphere. The enhancements of aerosols at the tropopause level during the NH summer may be due to the same transport process but associated with intense sources of aerosols at the surface. Since, the tropospheric air flux derived from CALIOP observations during North Hemisphere winter is 5 20 times larger than the slow ascent by radiative heating usually assumed, the observations suggest that convective overshooting is a major contributor to troposphere-to-stratosphere transport with concommitant implications to the Tropical Tropopause Layer top height, chemistry and thermal structure

    DNA Electrophoretic Migration Patterns Change after Exposure of Jurkat Cells to a Single Intense Nanosecond Electric Pulse

    Get PDF
    Intense nanosecond pulsed electric fields (nsPEFs) interact with cellular membranes and intracellular structures. Investigating how cells respond to nanosecond pulses is essential for a) development of biomedical applications of nsPEFs, including cancer therapy, and b) better understanding of the mechanisms underlying such bioelectrical effects. In this work, we explored relatively mild exposure conditions to provide insight into weak, reversible effects, laying a foundation for a better understanding of the interaction mechanisms and kinetics underlying nsPEF bio-effects. In particular, we report changes in the nucleus of Jurkat cells (human lymphoblastoid T cells) exposed to single pulses of 60 ns duration and 1.0, 1.5 and 2.5 MV/m amplitudes, which do not affect cell growth and viability. A dose-dependent reduction in alkaline comet-assayed DNA migration is observed immediately after nsPEF exposure, accompanied by permeabilization of the plasma membrane (YO-PRO-1 uptake). Comet assay profiles return to normal within 60 minutes after pulse delivery at the highest pulse amplitude tested, indicating that our exposure protocol affects the nucleus, modifying DNA electrophoretic migration patterns

    Hsp27 regulates podocyte cytoskeletal changes in an in vitro model of podocyte process retraction

    Full text link
    Nephrotic syndrome (NS) is characterized by structural changes in the actin‐rich foot processes of glomerular podocytes. We previously identified high concentrations of the small heat shock protein hsp27 within podocytes as well as increased glomerular accumulation and phosphorylation of hsp27 in puromycin aminonucleoside (PAN) ‐induced experimental NS. Here we analyzed murine podocytes stably transfected with hsp27 sense, antisense, and vector control constructs using a newly developed in vitro PAN model system. Cell morphology and the microfilament structure of untreated sense and antisense transfectants were altered compared with controls. Vector cell survival, polymerized actin content, cell area, and hsp27 content increased after 1.25 μg/ml PAN treatment and decreased after 5.0 μg/ml treatment. In contrast, sense cells were unaffected by 1.25 μg/ml PAN treatment whereas antisense cells showed decreases or no changes in all parameters. Treatment of sense cells with 5.0 μ g/ml PAN resulted in increased cell survival and cell area whereas antisense cells underwent significant decreases in all parameters. Hsp27 provided dramatic protection against PAN‐induced microfilament disruption in sense > vector > antisense cells. We conclude that hsp27 is able to regulate both the morphological and actin cytoskeletal response of podocytes in an in vitro model of podocyte injury.—Smoyer, W. E., Ransom, R. F. Hsp27 regulates podocyte cytoskeletal changes in an in vitro model of podocyte process retraction. FASEB J. 16, 315–326 (2002)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154256/1/fsb2fj010681com.pd

    Acute synovitis and intra-articular methylprednisolone acetate in ponies

    Get PDF
    AbstractObjective: To determine how acute synovitis, with and without intra-articular methylprednisolone acetate (MPA), affect synthesis of proteoglycan, total protein, and collagen in articular cartilage and total protein synthesis in synovial membrane.Design: Synovitis was induced in 10 ponies by the injection of 0.5 ng lipopolysaccharide (LPS) into the left radiocarpal and midcarpal joints every 2 days for a total of four treatments. Synovitis was documented by clinical examination and synovial fluid analyses. Two days before euthanasia, MPA (0.1 mg/kg) was injected with the last dose of LPS into both the left and right radiocarpal and midcarpal joints of five of these ponies. Proteoglycan synthesis in articular cartilage explants from these joints was measured by incorporation of sodium [35S]sulfate. The size of the proteoglycan monomers and their aggregation with hyaluronan was assessed by size-exclusion chromatography. Protein synthesis in articular cartilage was measured by incorporation of [3H]proline and collagen synthesis by conversion of [3H]proline into [3H]hydroxyproline. Protein synthesis was measured in synovial membrane explants by incorporation of [35S]methionine.Results: Ponies developed carpal effusion and mild lameness accompanied by increased total nucleated cell count and total solids in synovial fluid in response to the LPS injections. Moderate to severe synovial membrane proliferation and inflammation were observed histopathologically in joints injected with LPS but no consistent light-microscopical changes were observed in the articular cartilage from these joints. Intra-articular MPA alone was associated with decreased proteoglycan synthesis and increased protein and collagen synthesis in the cartilage explants. Total protein synthesis by synovial membrane was also increased by MPA alone. In contrast, no differences in protein or proteoglycan synthesis were observed in explants from the joints with synovitis, with or without intra-articular MPA. Treatment with MPA, LPS, and LPS/MPA did not alter proteoglycan aggregate size, but LPS-induced synovitis resulted in an increase in the second largest population of monomers. MPA increased the synthesis of small proteoglycan monomers.Conclusion: Based on the methods used, acute synovitis prevented changes induced by intra-articular MPA alone. Results suggested that the effect of intra-articular MPA on joint metabolism was different between inflamed and normal joints. Experimental studies must consider the effect of inflammation, as well as the potential to introducein vitroculture artifacts when investigating the effect of intra-articular corticosteroids on chondrocyte function
    corecore