The shape instability of magnetic domain walls under current is investigated
in a ferromagnetic (Ga,Mn)(As,P) film with perpendicular anisotropy. Domain
wall motion is driven by the spin transfer torque mechanism. A current density
gradient is found either to stabilize domains with walls perpendicular to
current lines or to produce finger-like patterns, depending on the domain wall
motion direction. The instability mechanism is shown to result from the
non-adiabatic contribution of the spin transfer torque mechanism.Comment: 5 pages, 3 figures + supplementary material