96 research outputs found

    MUSE observations of the lensing cluster SMACSJ2031.8-4036: new constraints on the mass distribution in the cluster core

    Get PDF
    International audienceWe present new observations of the lensing cluster SMACSJ2031.8-4036 obtained with the Multi Unit Spectroscopic Explorer (MUSE) integral field spectrograph as part of its commissioning on the Very Large Telescope. By providing medium-resolution spectroscopy over the full 4750-9350 Å domain and a 1 × 1 arcmin2 field of view, MUSE is ideally suited for identifying lensed galaxies in the cluster core, in particular multiple-imaged systems. We perform a redshift analysis of all sources in the data cube and identify a total of 12 systems ranging from z = 1.46 to 6.4, with all images of each system confirmed by a spectroscopic redshift. This allows us to accurately constrain the cluster mass profile in this region. We foresee that future MUSE observations of cluster cores should help us discover very faint Lyman alpha emitters thanks to the strong magnification and the high sensitivity of this instrument

    ALMA finds dew drops in the dusty spider’s web

    Get PDF
    We present 0.̋5 resolution ALMA detections of the observed 246 GHz continuum, [CI] 3P2→3P1 fine structure line ([CI]2–1), CO(7–6), and H2O lines in the z = 2.161 radio galaxy MRC1138-262, the so-called Spiderweb galaxy. We detect strong [CI]2–1 emission both at the position of the radio core, and in a second component ~4 kpc away from it. The 1100 km s-1 broad [CI]2–1 line in this latter component, combined with its H2 mass of 1.6 × 1010 M⊙, implies that this emission must come from a compact region <60 pc, possibly containing a second active galactic nucleus (AGN). The combined H2 mass derived for both objects, using the [CI]2–1 emission, is 3.3 × 1010 M⊙. The total CO(7–6)/[CI]2–1 line flux ratio of 0.2 suggests a low excitation molecular gas reservoir and/or enhanced atomic carbon in cosmic ray dominated regions. We detect spatially-resolved H2O 211−202 emission – for the first time in a high-z unlensed galaxy – near the outer radio lobe to the east, and near the bend of the radio jet to the west of the radio galaxy. No underlying 246 GHz continuum emission is seen at either position. We suggest that the H2O emission is excited in the cooling region behind slow (10–40 km s-1) shocks in dense molecular gas (103−5 cm-3). The extended water emission is likely evidence of the radio jet’s impact on cooling and forming molecules in the post-shocked gas in the halo and inter-cluster gas, similar to what is seen in low-z clusters and other high-z radio galaxies. These observations imply that the passage of the radio jet in the interstellar and inter-cluster medium not only heats gas to high temperatures, as is commonly assumed or found in simulations, but also induces cooling and dissipation, which can lead to substantial amounts of cold dense molecular gas. The formation of molecules and strong dissipation in the halo gas of MRC1138-262 may explain both the extended diffuse molecular gas and the young stars observed around MRC1138-262

    The Mid-Infrared Environments of High-Redshift Radio Galaxies

    Full text link
    Taking advantage of the impressive sensitivity of Spitzer to detect massive galaxies at high redshift, we study the mid-infrared environments of powerful, high-redshift radio galaxies at 1.2<z<3. Galaxy cluster member candidates were isolated using a single Spitzer/IRAC mid-infrared color criterion, [3.6]-[4.5]>-0.1 (AB), in the fields of 48 radio galaxies at 1.2<z<3. This simple IRAC color selection is effective at identifying galaxies at z>1.2. Using a counts-in-cell analysis, we identify a field as overdense when 15 or more red IRAC sources are found within 1arcmin (i.e.,~0.5Mpc at 1.2<z<3) of the radio galaxy to the 5sigma flux density limits of our IRAC data (f3.6=11.0uJy, f4.5=13.4uJy). We find that radio galaxies lie preferentially in medium to dense regions, with 73% of the targeted fields denser than average. Our (shallow) 120s data permit the rediscovery of previously known clusters and protoclusters associated with radio galaxies as well as the discovery of new promising galaxy cluster candidates at z>1.2.Comment: 14 pages, 7 figures, 3 tables, accepted for publication in Ap

    Discovery of an Excess of Halpha Emitters around 4C 23.56 at z=2.48

    Full text link
    We report the discovery of a significant excess of candidate Halpha emitters (HAEs) in the field of the radio galaxy 4C 23.56 at z=2.483. Using the MOIRCS near-infrared imager on the Subaru Telescope we found 11 candidate emission-line galaxies to a flux limit of ~7.5 10^-17 erg s-1 cm-2, which is about 5 times excess from the expected field counts with ~3-sigma significance. Three of these are spectroscopically confirmed as redshifted Halpha at z=2.49. The distribution of candidate emitters on the sky is tightly confined to a 1.2-Mpc-radius area at z=2.49, locating 4C 23.56 at the western edge of the distribution. Analysis of the deep Spitzer MIPS 24 mu m imaging shows that there is also an excess of faint MIPS sources. All but two of the 11 HAEs are also found in the MIPS data. The inferred star-formation rate (SFR) of the HAEs based on the extinction-corrected Halpha luminosity (median SFR >~100 M_solar yr-1) is similar to those of HAEs in random fields at z~2. On the other hand, the MIPS-based SFR for the HAEs is on average 3.6 times larger, suggesting the existence of the star-formation significanly obscured by dust. The comparison of the Halpha-based star-formation activities of the HAEs in the 4C 23.56 field to those in another proto-cluster around PKS 1138-262 at z=2.16 reveals that the latter tend to have fainter Halpha emission despite similar K-band magnitudes. This suggests that star-formation may be suppressed in the PKS 1138-262 protocluster relative to the 4C 23.56 protocluster. This difference among the HAEs in the two proto-clusters at z > 2 may imply that some massive cluster galaxies are just forming at these epochs with some variation among clusters.Comment: 29 pages, 13 figures, to be published in PASJ Subaru Special Issue (2011 Mar.

    The UV radiation from z2.5z\sim2.5 radio galaxies: Keck spectropolarimetry of 4C 23.56 and 4C 00.54

    Get PDF
    We present the results of deep spectropolarimetry of two powerful radio galaxies at z2.5z\sim2.5 (4C 00.54 and 4C 23.56) obtained with the W.M. Keck II 10m telescope, aimed at studying the relative contribution of the stellar and non-stellar components to the ultraviolet continuum. Both galaxies show strong linear polarization of the continuum between rest-frame \sim1300-2000~\AA, and the orientation of the electric vector is perpendicular to the main axis of the UV continuum. In this sense, our objects are like most 3C radio galaxies at z1z\sim1. The total flux spectra of 4C 00.54 and 4C 23.56 do not show the strong P-Cygni absorption features or the photospheric absorption lines expected when the UV continuum is dominated by young and massive stars. The only features detected can be ascribed to interstellar absorptions by SiII, CII and OI. Our results are similar to those for 3C radio galaxies at lower zz, suggesting that the UV continuum of powerful radio galaxies at z2.5z\sim2.5 is still dominated by non-stellar radiation, and that young massive stars do not contribute more than \approx50% to the total continuum flux at 1500~\AA.Comment: 17 pages, ApJ Letters, in press, 5 figures, 2 table

    3D tomography of the giant Lyα nebulae of z ≈ 3–5 radio-loud AGN

    Get PDF
    Lyα emission nebulae are ubiquitous around high-redshift galaxies and are tracers of the gaseous environment on scales out to ≳100 pkpc (proper kiloparsec). High-redshift radio galaxies (HzRGs, type-2 radio-loud quasars) host large-scale nebulae observed in the ionised gas differ from those seen in other types of high-redshift quasars. In this work, we exploit MUSE observations of Lyα nebulae around eight HzRGs (2.92 < z < 4.51). All of the HzRGs have large-scale Lyα emission nebulae with seven of them extended over 100 pkpc at the observed surface brightness limit (∼2 − 20 × 10−19 erg s−1 cm−2 arcsec−2). Because the emission line profiles are significantly affected by neutral hydrogen absorbers across the entire nebulae extent, we performed an absorption correction to infer maps of the intrinsic Lyα surface brightness, central velocity, and velocity width, all at the last scattering surface of the observed Lyα photons. We find the following: (i) that the intrinsic surface brightness radial profiles of our sample can be described by an inner exponential profile and a power law in the low luminosity extended part; (ii) our HzRGs have a higher surface brightness and more asymmetric nebulae than both radio-loud and radio-quiet type-1 quasars; (iii) intrinsic nebula kinematics of four HzRGs show evidence of jet-driven outflows but we find no general trends for the whole sample; (iv) a relation between the maximum spatial extent of the Lyα nebula and the projected distance between the active galactic nuclei (AGN) and the centroids of the Lyα nebula; and (v) an alignment between radio jet position angles and the Lyα nebula morphology. All of these findings support a scenario in which the orientation of the AGN has an impact on the observed nebular morphologies and resonant scattering may affect the shape of the surface brightness profiles, nebular kinematics, and relations between the observed Lyα morphologies. Furthermore, we find evidence showing that the outskirts of the ionised gas nebulae may be ‘contaminated’ by Lyα photons from nearby emission halos and that the radio jet affects the morphology and kinematics of the nebulae. Overall, this work provides results that allow us to compare Lyα nebulae around various classes of quasars at and beyond cosmic noon (z ∼ 3)

    The galaxy mass-size relation in CARLA clusters and proto-clusters at 1.4 < z < 2.8: larger cluster galaxy sizes

    Full text link
    (Abridged) We study the galaxy mass-size relation in CARLA spectroscopically confirmed clusters at 1.4<z<2.81.4<z<2.8, which span a total stellar mass 11.3<log(Mc/M)<12.611.3<\mathrm{log}(M^c_*/M_{\odot})<12.6 (halo mass 13.5log(Mhc/M)14.513.5 \lesssim \mathrm{log}(M^c_h/M_{\odot}) \lesssim 14.5). Our main finding is that cluster passive ETG at z1.5z \gtrsim 1.5 with log(M/M)>10.5{\rm log}(M/M_{\odot})>10.5 are systematically 0.20.3 dex\gtrsim 0.2-0.3~{\rm dex} larger than field ETGs. The passive ETG average size evolution is slower at 1<z<21<z<2 when compared to the field. This could be explained by differences in the formation and early evolution of galaxies in haloes of a different mass. Strong compaction and gas dissipation in field galaxies, followed by a sequence of mergers may have also played a significant role in the field ETG evolution, but not in the evolution of cluster galaxies. Our passive ETG mass-size relation shows a tendency to flatten at 9.6<log(M/M)<10.59.6<{\rm log}(M/M_{\odot})<10.5, where the average size is log(Re/kpc)=0.05±0.22\mathrm{log}(R_e/\mathrm{kpc}) = 0.05 \pm 0.22. This implies that galaxies in the low end of the mass-size relation do not evolve much from z2z\sim 2 to the present, and that their sizes evolve in a similar way in clusters and in the field. BCGs lie on the same mass-size relation as satellites, suggesting that their size evolution is not different at redshift z \gtrsim 2. Half of the active ETGs (30%\sim 30\% of the ETGs) follow the field passive galaxy mass-size relation, and the other half follow the field active galaxy mass-size relation. These galaxies likely went through a recent merger or neighbor galaxy interaction, and would most probably quench at a later epoch and increase the fraction of passive ETGs in clusters. We do not observe a large population of compact galaxies, as is observed in the field at these redshifts, implying that the galaxies in our clusters are not observed in an epoch close to their compaction.Comment: 15 pages, 10 figures, accepted for publication in Astronomy & Astrophysic

    X-shooter Observations of the Gravitational Lens System CASSOWARY 5

    Full text link
    We confirm an eighth gravitational lens system in the CASSOWARY catalogue. Exploratory observations with the X-shooter spectrograph on the VLT show the system CSWA5 to consist of at least three images of a blue star-forming galaxy at z = 1.0686, lensed by an apparent foreground group of red galaxies one of which is at z = 0.3877. The lensed galaxy exhibits a rich spectrum with broad interstellar absorption lines and a wealth of nebular emission lines. Preliminary analysis of these features shows the galaxy to be young, with an age of 25-50 Myr. With a star-formation rate of approximately 20 solar masses/yr, the galaxy has already assembled a stellar mass of 3 x 10^9 solar masses and reached half-solar metallicity. Its blue spectral energy distribution and Balmer line ratios suggest negligible internal dust extinction. A more in-depth analysis of the properties of this system is currently hampered by the lack of a viable lensing model. However, it is already clear that CSWA5 shares many of its physical characteristics with the general population of UV-selected galaxies at redshifts z = 1-3, motivating further study of both the source and the foreground mass concentration responsible for the gravitational lensing.Comment: 12 pages; Accepted for publication in MNRA

    The Spitzer High Redshift Radio Galaxy Survey

    Full text link
    We present results from a comprehensive imaging survey of 70 radio galaxies at redshifts 1<z<5.2 using all three cameras onboard the Spitzer Space Telescope. The resulting spectral energy distributions unambiguously show a stellar population in 46 sources and hot dust emission associated with the active nucleus in 59. Using a new restframe S_3um/S_1.6um versus S_um/S_3um criterion, we identify 42 sources where the restframe 1.6um emission from the stellar population can be measured. For these radio galaxies, the median stellar mass is high, 2x10^11 M_sun, and remarkably constant within the range 13, there is tentative evidence for a factor of two decrease in stellar mass. This suggests that radio galaxies have assembled the bulk of their stellar mass by z~3, but confirmation by more detailed decomposition of stellar and AGN emission is needed. The restframe 500 MHz radio luminosities are only marginally correlated with stellar mass but are strongly correlated with the restframe 5um hot dust luminosity. This suggests that the radio galaxies have a large range of Eddington ratios. We also present new Very Large Array 4.86 and 8.46 GHz imaging of 14 radio galaxies and find that radio core dominance --- an indicator of jet orientation --- is strongly correlated with hot dust luminosity. While all of our targets were selected as narrow-lined, type 2 AGNs, this result can be understood in the context of orientation-dependent models if there is a continuous distribution of orientations from obscured type 2 to unobscured type 1 AGNs rather than a clear dichotomy. Finally, four radio galaxies have nearby (<6") companions whose mid-IR colors are suggestive of their being AGNs. This may indicate an association between radio galaxy activity and major mergers.Comment: 31 pages, 125 figures. Accepted for publication in the Astrophysical Journa
    corecore