154 research outputs found

    Exploring heritage through time and space : Supporting community reflection on the highland clearances

    Get PDF
    On the two hundredth anniversary of the Kildonan clearances, when people were forcibly removed from their homes, the Timespan Heritage centre has created a program of community centred work aimed at challenging pre conceptions and encouraging reflection on this important historical process. This paper explores the innovative ways in which virtual world technology has facilitated community engagement, enhanced visualisation and encouraged reflection as part of this program. An installation where users navigate through a reconstruction of pre clearance Caen township is controlled through natural gestures and presented on a 300 inch six megapixel screen. This environment allows users to experience the past in new ways. The platform has value as an effective way for an educator, artist or hobbyist to create large scale virtual environments using off the shelf hardware and open source software. The result is an exhibit that also serves as a platform for experimentation into innovative ways of community co-creation and co-curation.Postprin

    "Give Us the Chance to Be Part of You, We Want Our Voices to Be Heard": Assistive Technology as a Mediator of Participation in (Formal and Informal) Citizenship Activities for Persons with Disabilities Who Are Slum Dwellers in Freetown, Sierra Leone.

    Get PDF
    The importance of assistive technology (AT) is gaining recognition, with the World Health Organisation (WHO) set to publish a Global Report in 2022. Yet little is understood about access for the poorest, or the potential of AT to enable this group to participate in the activities of citizenship; both formal and informal. The aim of this qualitative study was to explore AT as mediator of participation in citizenship for persons with disabilities who live in two informal settlements in Freetown, Sierra Leone (SL). The paper presents evidence from 16 participant and 5 stakeholder interviews; 5 focus groups and 4 events; combining this with the findings of a house-to-house AT survey; and two national studies-a country capacity assessment and an informal markets deep-dive. Despite citizenship activities being valued, a lack of AT was consistently reported and hindered participation. Stigma was also found to be a major barrier. AT access for the poorest must be addressed if citizenship participation for persons with disabilities is a genuine global intention and disability justice is to become a reality

    Shifting new media: from content to consultancy, from heterarchy to hierarchy

    Get PDF
    This is a detailed case history of one of London’s iconic new media companies, AMX Studios. Some of the changes in this firm, we assume, are not untypical for other firms in this sector. Particularly we want to draw attention to two transformations. The first change in AMX and in London’s new media industry more generally refers to the field of industrial relations. What can be observed is a shift from a rather heterarchical towards a more hierarchical organized new media industry, a shift from short-term project networks to long-term client dependency. The second change refers to new media products and services. We want to argue for a shift from cool content production towards consultancy and interactive communications solutions

    Cooperation between NMDA-Type Glutamate and P2 Receptors for Neuroprotection during Stroke: Combining Astrocyte and Neuronal Protection

    Get PDF
    Excitotoxicity is the principle mechanism of acute injury during stroke. It is defined as the unregulated accumulation of excitatory neurotransmitters such as glutamate within the extracellular space, leading to over-activation of receptors, ionic disruption, cell swelling, cytotoxic Ca2+ elevation and a feed-forward loop where membrane depolarisation evokes further neurotransmitter release. Glutamate-mediated excitotoxicity is well documented in neurons and oligodendrocytes but drugs targeting glutamate excitotoxicity have failed clinically which may be due to their inability to protect astrocytes. Astrocytes make up ~50% of the brain volume and express high levels of P2 adenosine triphosphate (ATP)-receptors which have excitotoxic potential, suggesting that glutamate and ATP may mediate parallel excitotoxic cascades in neurons and astrocytes, respectively. Mono-cultures of astrocytes expressed an array of P2X and P2Y receptors can produce large rises in [Ca2+]i; mono-cultured neurons showed lower levels of functional P2 receptors. Using high-density 1:1 neuron:astrocyte co-cultures, ischemia (modelled as oxygen-glucose deprivation: OGD) evoked a rise in extracellular ATP, while P2 blockers were highly protective of both cell types. GluR blockers were only protective of neurons. Neither astrocyte nor neuronal mono-cultures showed significant ATP release during OGD, showing that cell type interactions are required for ischemic release. P2 blockers were also protective in normal-density co-cultures, while low doses of combined P2/GluR blockers where highly protective. These results highlight the potential of combined P2/GluR block for protection of neurons and glia.</jats:p

    Adaptation Strategies for Personalized Gait Neuroprosthetics

    Get PDF
    Personalization of gait neuroprosthetics is paramount to ensure their efficacy for users, who experience severe limitations in mobility without an assistive device. Our goal is to develop assistive devices that collaborate with and are tailored to their users, while allowing them to use as much of their existing capabilities as possible. Currently, personalization of devices is challenging, and technological advances are required to achieve this goal. Therefore, this paper presents an overview of challenges and research directions regarding an interface with the peripheral nervous system, an interface with the central nervous system, and the requirements of interface computing architectures. The interface should be modular and adaptable, such that it can provide assistance where it is needed. Novel data processing technology should be developed to allow for real-time processing while accounting for signal variations in the human. Personalized biomechanical models and simulation techniques should be developed to predict assisted walking motions and interactions between the user and the device. Furthermore, the advantages of interfacing with both the brain and the spinal cord or the periphery should be further explored. Technological advances of interface computing architecture should focus on learning on the chip to achieve further personalization. Furthermore, energy consumption should be low to allow for longer use of the neuroprosthesis. In-memory processing combined with resistive random access memory is a promising technology for both. This paper discusses the aforementioned aspects to highlight new directions for future research in gait neuroprosthetics.AK is funded by a faculty endowment by adidas AG. MA, SKH, NM, MN, RJQ, R-DR, RJT are supported by NSF CPS grant 1739800, VA Merit Reviews A2275-R and 3056, and the NIH (5T32EB004314-15, R01 NS040547-13). MS and AG are funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 803035). AJd-A, JMF-L, and JCM are supported by coordinated grants RTI2018-097290-B-C31/C32/C33 (TAILOR project) funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. MR is funded by the Lo3-ML project by the Federal Ministry for Education, Science and Technology (BMBF) (Funding No. 16ES1142K). AC, SS, and MV were supported by the European Research Council (ERC) under the project NGBMI (759370), the Einstein Stiftung Berlin, the ERA-NET NEURON project HYBRIDMIND (BMBF, 01GP2121A and -B) and the BMBF project NEO (13GW0483C)

    Probing of Exosites Leads to Novel Inhibitor Scaffolds of HCV NS3/4A Proteinase

    Get PDF
    Hepatitis C is a treatment-resistant disease affecting millions of people worldwide. The hepatitis C virus (HCV) genome is a single-stranded RNA molecule. After infection of the host cell, viral RNA is translated into a polyprotein that is cleaved by host and viral proteinases into functional, structural and non-structural, viral proteins. Cleavage of the polyprotein involves the viral NS3/4A proteinase, a proven drug target. HCV mutates as it replicates and, as a result, multiple emerging quasispecies become rapidly resistant to anti-virals, including NS3/4A inhibitors.To circumvent drug resistance and complement the existing anti-virals, NS3/4A inhibitors, which are additional and distinct from the FDA-approved telaprevir and boceprevir α-ketoamide inhibitors, are required. To test potential new avenues for inhibitor development, we have probed several distinct exosites of NS3/4A which are either outside of or partially overlapping with the active site groove of the proteinase. For this purpose, we employed virtual ligand screening using the 275,000 compound library of the Developmental Therapeutics Program (NCI/NIH) and the X-ray crystal structure of NS3/4A as a ligand source and a target, respectively. As a result, we identified several novel, previously uncharacterized, nanomolar range inhibitory scaffolds, which suppressed of the NS3/4A activity in vitro and replication of a sub-genomic HCV RNA replicon with a luciferase reporter in human hepatocarcinoma cells. The binding sites of these novel inhibitors do not significantly overlap with those of α-ketoamides. As a result, the most common resistant mutations, including V36M, R155K, A156T, D168A and V170A, did not considerably diminish the inhibitory potency of certain novel inhibitor scaffolds we identified.Overall, the further optimization of both the in silico strategy and software platform we developed and lead compounds we identified may lead to advances in novel anti-virals

    A novel duplex real-time reverse transcriptase-polymerase chain reaction assay for the detection of hepatitis C viral RNA with armored RNA as internal control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The hepatitis C virus (HCV) genome is extremely heterogeneous. Several HCV infections can not be detected using currently available commercial assays, probably because of mismatches between the template and primers/probes. By aligning the HCV sequences, we developed a duplex real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay using 2 sets of primers/probes and a specific armored RNA as internal control. The 2 detection probes were labelled with the same fluorophore, namely, 6-carboxyfluorescein (FAM), at the 5' end; these probes could mutually combine, improving the power of the test.</p> <p>Results</p> <p>The limit of detection of the duplex primer/probe assay was 38.99 IU/ml. The sensitivity of the assay improved significantly, while the specificity was not affected. All HCV genotypes in the HCV RNA Genotype Panel for Nucleic Acid Amplification Techniques could be detected. In the testing of 109 serum samples, the performance of the duplex real-time RT-PCR assay was identical to that of the COBAS AmpliPrep (CAP)/COBAS TaqMan (CTM) assay and superior to 2 commercial HCV assay kits.</p> <p>Conclusions</p> <p>The duplex real-time RT-PCR assay is an efficient and effective viral assay. It is comparable with the CAP/CTM assay with regard to the power of the test and is appropriate for blood-donor screening and laboratory diagnosis of HCV infection.</p
    corecore