
PERSPECTIVE
published: 16 December 2021

doi: 10.3389/fnbot.2021.750519

Frontiers in Neurorobotics | www.frontiersin.org 1 December 2021 | Volume 15 | Article 750519

Edited by:

Zlatko Matjacic,

University Rehabilitation Institute

(Slovenia), Slovenia

Reviewed by:

Carlos A. Cifuentes,

Escuela Colombiana de Ingenieria

Julio Garavito, Colombia

Dong Hyun Kim,

Korea Advanced Institute of Science

and Technology, South Korea

*Correspondence:

Anne D. Koelewijn

anne.koelewijn@fau.de

Received: 30 July 2021

Accepted: 18 November 2021

Published: 16 December 2021

Citation:

Koelewijn AD, Audu M, del-Ama AJ,

Colucci A, Font-Llagunes JM,

Gogeascoechea A, Hnat SK,

Makowski N, Moreno JC, Nandor M,

Quinn R, Reichenbach M, Reyes R-D,

Sartori M, Soekadar S, Triolo RJ,

Vermehren M, Wenger C, Yavuz US,

Fey D and Beckerle P (2021)

Adaptation Strategies for Personalized

Gait Neuroprosthetics.

Front. Neurorobot. 15:750519.

doi: 10.3389/fnbot.2021.750519

Adaptation Strategies for
Personalized Gait Neuroprosthetics
Anne D. Koelewijn 1*, Musa Audu 2,3, Antonio J. del-Ama 4, Annalisa Colucci 5,

Josep M. Font-Llagunes 6,7, Antonio Gogeascoechea 8, Sandra K. Hnat 2,3,

Nathan Makowski 2,9, Juan C. Moreno 10, Mark Nandor 2,11, Roger Quinn 2,11,

Marc Reichenbach 12,13, Ryan-David Reyes 2,3, Massimo Sartori 8, Surjo Soekadar 5,

Ronald J. Triolo 2,3, Mareike Vermehren 5, Christian Wenger 14, Utku S. Yavuz 15,

Dietmar Fey 13 and Philipp Beckerle 16

1 Biomechanical Data Analysis and Creation (BIOMAC) Group, Machine Learning and Data Analytics Lab, Faculty of

Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 2Department of Veterans Affairs, Louis

Stokes Clevel and Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, OH, United States,
3Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States, 4 Applied

Mathematics, Materials Science and Technology and Electronic Technology Department, Rey Juan Carlos University,

Mostoles, Spain, 5Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and

Neurosciences, Charité - Universitätsmedizin Berlin, Berlin, Germany, 6 Biomechanical Engineering Lab, Department of

Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona,

Spain, 7 Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain, 8Department of Biomechanical Engineering,

Faculty of Engineering Technology, University of Twente, Enschede, Netherlands, 9Department of Physical Medicine and

Rehabilitation, MetroHealth Medical Center, Cleveland, OH, United States, 10Neural Rehabilitation Group, Department of

Translational Neuroscience, Cajal Institute, CSIC, Madrid, Spain, 11Department of Mechanical Engineering, Case Western

Reserve University, Cleveland, OH, United States, 12Chair of Computer Engineering, Brandenburg University of Technology

Cottbus-Senftenberg, Cottbus, Germany, 13Chair for Computer Architecture, Department of Computer Science, Faculty of

Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 14 IHP-Leibniz Institut Fuer Innovative

Mikroelektronik, Frankfurt (Oder), Germany, 15 Biomedical Signals and Systems Group, University of Twente, Enschede,

Netherlands, 16Chair of Autonomous Systems and Mechatronics, Department of Electrical Engineering, Artificial Intelligence

in Biomedical Engineering, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Personalization of gait neuroprosthetics is paramount to ensure their efficacy for users,

who experience severe limitations in mobility without an assistive device. Our goal

is to develop assistive devices that collaborate with and are tailored to their users,

while allowing them to use as much of their existing capabilities as possible. Currently,

personalization of devices is challenging, and technological advances are required to

achieve this goal. Therefore, this paper presents an overview of challenges and research

directions regarding an interface with the peripheral nervous system, an interface with

the central nervous system, and the requirements of interface computing architectures.

The interface should be modular and adaptable, such that it can provide assistance

where it is needed. Novel data processing technology should be developed to allow for

real-time processing while accounting for signal variations in the human. Personalized

biomechanical models and simulation techniques should be developed to predict

assisted walkingmotions and interactions between the user and the device. Furthermore,

the advantages of interfacing with both the brain and the spinal cord or the periphery

should be further explored. Technological advances of interface computing architecture

should focus on learning on the chip to achieve further personalization. Furthermore,
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energy consumption should be low to allow for longer use of the neuroprosthesis.

In-memory processing combined with resistive random access memory is a promising

technology for both. This paper discusses the aforementioned aspects to highlight new

directions for future research in gait neuroprosthetics.

Keywords: neuroprosthesis, resistive randomaccessmemory, neural interface, personalized devices, perspective,

embedded artificial intelligence

1. INTRODUCTION

Gait neuroprostheses aim to restore function in persons with
paralysis caused by various injuries, diseases, or dysfunctions
in the central or peripheral nervous system, e.g., a stroke,
cerebral palsy (CP) or a spinal cord injury (SCI). Interfaces
with the brain, spinal cord or the periphery are appropriate
(Figure 1), whereas the type and location of the interface is highly
dependent on the user’s abilities and remaining possibilities for
voluntary control. Development of gait neuroprostheses should
focus on user-friendliness, and aim to maximize speed and
safety, while minimizing fall risk. Furthermore, systems should
be portable and easy-to-use to achieve their adoption in real-
life environments.

Despite some individual success using interfaces with the
brain (e.g., Ajiboye et al. 2017), spinal cord (e.g., Wagner et al.
2018), and periphery (e.g., Nandor et al. 2021), widespread
application of neuroprostheses is still limited. One of the
main challenges are differences between and within individuals.
Between individuals, there is significant heterogeneity in the
target population, which requires personalization of stimulation,
stimulus timing and intensity, and the possible extent of
additional motorized assistance. With “personalization,” we
mean that every patient is provided with an individualized
neuroprosthesis. This personalization can be done on the
hardware and software level. It can be achieved offline through
modeling and simulation, or online through adaptation of the
stimulation scheme to the patient’s current abilities. Personalizing
the intervention is currently a time intensive process of trial and
error by a human expert. Automation of this process with expert
systems that can learn the optimal combinations of muscular
and motor activation for a given individual would increase
accessibility of gait neuroprostheses (Seel et al., 2016). Over
time, due to fatiguing or improved function after rehabilitation,
individuals might benefit from different stimulation patterns,
which requires stimulation to be adaptive (Del-Ama et al., 2014).

The development of adaptive interfaces and personalized
devices requires an interdisciplinary approach involving
clinicians, neuroscientists, engineers, and computer scientists.
The effectiveness of gait neuroprostheses can be quantitatively
assessed by measuring the gait speed, where desired gait
speeds suitable for community use are between 0.8 and 1.2
m/s (Robinett and Vondran, 1988; Lapointe et al., 2001), or
by measuring the metabolic energy expenditure while using
the device (Asselin et al., 2015; Evans et al., 2015; Miller et al.,
2016). Other acceptable metrics could be gait outcomes such as
kinematics or symmetry (Hayes et al., 2020). Furthermore, limits
for comfortable and tolerable stimulation should be defined

FIGURE 1 | Overview of the different organs involved in gait and their

communication structure (left). The right side shows examples of prostheses

that interface with these organs, specifically the brain (top), spinal cord (bottom

left), or periphery (bottom right).

for each user. Figure 2 provides an overview of the different
aims and future directions that are described in this paper.
Movement analyses and simulations are required to understand
pathological gait patterns and to tailor assistance, while the
design should also be modular and user friendly. Artificial
intelligence (AI) would allow control algorithms to be adapted
to each individual user, and potentially over the course of
rehabilitation. Furthermore, AI has the potential to process data,
e.g., electroencephalography and electromyography, accurately
in real-time, which is challenging due to the noisiness of these
measurements. Adoption of AI in gait neuroprostheses requires
development of new software and hardware for efficient on-chip
learning, which should also focus on low energy consumption to
allow for daily use of the device.

In this perspective paper, the organizers, speakers, and authors
of the mini symposium “Adaptation Strategies for Personalized
Gait Neuroprosthetics” which was held during the 10th

International IEEE/EMBS Conference on Neural Engineering
(NER) in May 2021, summarize and extend their contributions
and discussions to point out directions for future research.
The workshop comprised talks and discussion from experts
working on assistive and rehabilitative neuroprostheses and
exoskeletons. This perspective covers three topics: interfacing
with the periphery, interfacing with the central nervous system,
and requirements of interface computing architectures. We
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FIGURE 2 | Overview of the topics of this perspective on gait

neuroprostheses. We discuss requirements and future directions for interfaces

with the periphery and the central nervous system (brain and spinal cord), as

well as for the computer architecture.

discuss and provide a perspective on current research and
future directions.

2. INTERFACING WITH THE PERIPHERY

Interfacing with the peripheral nervous system is a promising
method to address specific functional deficits (Wilson
et al., 2019). Through user-specific stimulation via surface,
percutaneous, or implanted electrodes, muscles can perform a
majority of the work for particular tasks. By implementing hybrid
actuation approaches combining neural stimulation of affected
muscles with robotic assistance, lower extremity function can
be restored for patients with gait impairments, who can still
drive the main features of the walking cycle by their healthy or
preserved muscles. By bringing together neuroprosthetic and
wearable robotic approaches, those hybrid concepts combine
physiologic benefits by activating the other paralyzed and
paretic lower limb muscles through neural stimulation, reducing
the demand on external robotic assistance, and augmenting
volitional and programmed movements to enhance safety,
stability, and endurance.

Neuromechanical simulations of such neuromuscular,
biomechanical, and mechanical interactions can be used to
optimize the performance of users, hardware design (e.g., reduce
size, weight or energy consumption), and controller design
(e.g., seamless motor/muscle actuation and appropriate sensory
feedback) (Alonso et al., 2012; Crago et al., 2014; García-Vallejo
et al., 2016; Uchida et al., 2016; Sreenivasa et al., 2017; Michaud
et al., 2019; Sauder et al., 2019). Dynamic simulations of the
system composed of the human and the neuroprosthesis can
predict the combined human-neuroprosthesis response, allow

for device and control customization to maximize walking
ability, and improve our understanding of the interaction
between human and device for new movement conditions.
We advocate to extend computational neuromusculoskeletal
models to encompass paralysis-related muscular constraints
(Alonso et al., 2012; García-Vallejo et al., 2016) and auxiliary
assistive devices (e.g., crutches/walker, orthoses, exoskeletons,
etc.) (Febrer-Nafría et al., 2020, 2021) to achieve subject-specific
model-based optimization of the device and its control. Then,
such simulations might reveal insights into biomechanical effects
such as altered recruitment, reduced force production due
to atrophy, fatigue effects, or abnormal synergies (Shin et al.,
2018). However, creating a personalized neuromusculoskeletal
model of a patient is still challenging, since the exact underlying
neurological problems of a patient are difficult to extract,
and simulations cannot include the variability in muscle
responses over time. Experimental validation of simulated
clinical outcomes is therefore required (De Groote and Falisse,
2021; Fregly, 2021). Furthermore, even though simulations
can provide insight into the required stimulation pattern, the
stimulation needs to be adjusted in practice due to the variability
in muscle response.

To adapt to the individual user, modular and adjustable
hardware and control solutions can be implemented on a joint-
need basis, and adapted to different anthropometrics, available
muscles and their capabilities, as well as the neurological
conditions (Del-Ama et al., 2014; Makowski et al., 2021; Nandor
et al., 2021). Control in particular requires an adaptive approach
that continuously updates muscle stimulation and electric motor
actuation, and potentially prioritizes muscle activity through
commanding motors in a trajectory-free ballistic paradigm while
monitoring and managing muscle fatigue. To achieve seamless
integration of auxiliary assistive devices, control strategies might
rely on sensors onboard the human and the machine to measure
user-device interaction (Lancini et al., 2016; Ugurlu et al., 2020)
and should favor low impedances so the user’s muscles can
backdrive the device (Foglyano et al., 2016; Beckerle et al., 2017).
Wearable kinematic sensing based on inertial measurement units
is expected to provide equivalent performance to marker-based
approaches. To this end, recent works propose to integrate
inertial measurement units into musculoskeletal modeling
workflows (Dorschky et al., 2019, 2020; Al Borno et al., 2021;
Guidolin et al., 2021). Beyond this, sensory data from the limbs
and muscles could be used to improve control and increase
muscle perfomance by improved fatigue management compared
to current methods based on muscle activity estimation
(Alibeji et al., 2017; Mohamad et al., 2017).

3. INTERFACING WITH THE CENTRAL
NERVOUS SYSTEM

Neural interfacing technologies connected to the CNS, the spinal
cord (Wagner et al., 2018) and the brain (Ajiboye et al., 2017)
have shown promising results, achieving restoration of control
of extremities. While myographic control can provide more
reliable and versatile assistance, there is increasing evidence that
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only stimulation at the CNS level can trigger motor recovery
(Soekadar et al., 2015; Cervera et al., 2018). Moreover, when
there is no voluntary control of the periphery, an interface
to the central nervous system might be the only remaining
approach to restore movement or communication (Birbaumer
et al., 2014). Most neural interfaces focus on either the brain or
the spinal cord, but recently, pioneering studies also investigate
combinations, either of the brain and the spinal cord, or the brain
and the periphery (Dixon et al., 2016; Shulga et al., 2021).

For the spinal cord, a key goal is to interface with specific
motor circuitries responsible for locomotion. Commonly,
invasive interfaces are used (Hochberg et al., 2006, 2012;
Wagner et al., 2018), which require complex setups to infer
neural information of movement intention. Noninvasive
approaches, which combine high-density electromyography,
blind source separation and neuromechanical modeling,
could offer an inexpensive alternative. Although high-density
electromyography records spatiotemporal myoelectric activity
at the periphery level, it underlies interfering information from
spinal neural cells (i.e., alpha motor neurons). Blind source
separation (Holobar et al., 2009; Negro et al., 2016) enables
separating the interfering activity from neural sources, thereby
retrieving the activity of actual motor neuron pools. In turn,
the decoded neural firing events can be employed to drive
comprehensive neuromusculoskeletal models (Sartori et al.,
2016, 2017). Such an interface allows for the activity of actual
motor neuron pools to be decoded by separating the interference
activity from the neural source. This technique is currently used
for characterizing motor neurons during voluntary contractions
(Farina and Holobar, 2016) and reflex movements (Yavuz
et al., 2015) in healthy and impaired (Holobar et al., 2012)
individuals. Moreover, other applications include studying the
neuromechanical response to external devices (Farina et al., 2014;
Gogeascoechea et al., 2020). This technique can therefore extend
current open-loop rehabilitation techniques into closed-loop
neuro-modulative approaches. However, its use is mostly limited
to isometric contractions or slow dynamic contractions, mainly
due to computational challenges related to the assumption
that motor units are stationary and real-time implementation
of the method. Both model-free AI (e.g., machine and deep
learning techniques) (Chen et al., 2020; Clarke et al., 2020)
and model-based techniques (e.g., data-driven mechanistic
modeling) (Sartori and Sawicki, 2021) are explored to enable
real-time implementation, which would allow mechanical and
neural adaptations to exoskeleton training and neurostimulation
to be predicted.

Besides providing intuitive and seamless assistive control, an
important goal at the level of the brain is to promote neuroplastic
changes and foster functional connectivity between central
motoneurons and inactive and/or silent peripheral motoneurons
(Donati et al., 2016). By decoding movement intention and gait
characteristics in real time, invasive and non-invasive brain-
computer interfaces can directly infer the user’s intention to
move, optimizing rehabilitation outcomes (Soekadar et al., 2015;
Mrachacz-Kersting et al., 2016). Non-invasive brain-computer
interfaces can assess large-scale brain oscillatory activity directly,
through electroencephalography ormagnetoencephalography, or

indirectly, by measuring the brain’s energy expenditure (Liew
et al., 2016; Soekadar et al., 2021). Invasive brain-computer
interfaces typically exploit the user’s ability to train the electrical
activity in their brain, which is recorded by electrocorticography
or multielectrode arrays (Hochberg et al., 2012; Ajiboye et al.,
2017). The future of individualized brain-computer interfaces
interventions relies on advanced algorithms for automated
detection of brain states and self-adapting neurofeedback,
as well as on hybrid neural interfaces, integrating different
biosignals, e.g., electroencephalography, electromyography, or
electrooculography, to allow for a more robust and safe control
in real-life applications (Witkowski et al., 2014; Soekadar
et al., 2016). To enable a broad adoption of brain-computer
interfaces in real-life environments for clinics and home use,
portable and easy-to-use systems need to be designed, requiring
comfortable electroencephalography-headsets that minimize
preparation time and allow self-applicability. Furthermore, new
machine learning approaches are needed to optimize calibration
time without inflating the number of sensors.

Instead of focusing on interfacing solely with either the brain,
central nervous system, or periphery, the next generation of
gait neuroprostheses for movement rehabilitation may aim to
develop an interface on multiple levels. The advantage is that
the paired activation of pre- and post-synaptic motoneurons
at the level of the spinal cord is crucial for facilitating the re-
wiring of functional connections after spinal cord injury (Dixon
et al., 2016; Shulga et al., 2021). Motor cortex activity can also
be used to control spinal cord stimulation (Capogrosso et al.,
2016) instead of external control using a mobile app (Wagner
et al., 2018). Adapting the parameters of peripheral stimulation
to the ongoing neural activity has also proven to play a key
role in fostering neuroplastic reorganization (Mrachacz-Kersting
et al., 2016; Bonizzato et al., 2018). Therefore, we envision
the implementation of brain-computer interfaces that allow for
personalized adaptive modulation of brain activity and alpha
motor circuitries.

4. INTERFACE WITH THE EMBEDDED
COMPUTER ARCHITECTURE

The main requirements for interface computing architectures
of gait neuroprosthetics are that the system is personalizable
and adaptable, it should consume as little energy as possible,
such that the system can be used optimally for at least a
full day, and data processing should happen in real-time.
Embedded AI for neuroprosthetics is a promising approach
to achieve these requirements, as it has the potential to be
real-time, while the computing technology and electronics are
attached to the body or even implanted inside the body.
The importance of a corresponding computer architecture in
neuroprosthesis has been emphasized (Vassanelli and Mahmud,
2016; Ielmini and Wong, 2018), specifically to develop a
suitable neuronal architecture to interface with the brain.
However, no implementations exist so far, and therefore the
further development and prototyping of concepts is of utmost
importance (Mikhaylov et al., 2020). To achieve personalization
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and adaptability, a main challenge is to perform online learning
on the embedded AI. In contrast, today’s embedded AI only
allow inference, while networks are trained offline. This training
is computationally intensive and consumes much energy. To
achieve low energy consumption and real-time processing for
training as well as inference on the chip, the embedded AI should
be implemented as low-energy circuits.

An important step to achieve low energy consumption in
embedded AI is to use in-memory processing, i.e., operations
on data are performed analogously or digitally directly in
the memory. Low-energy consumption is inherent for analog
processing, since no digital conversion is required, while
specialized hardware architectures without a central processing
unit can greatly decrease energy consumption since long data
paths are avoided. Using non-volatile storage ensures that no
information is lost when power is switched off, what can
be done when no data processing is required, e.g., when a
person wearing a neuroprosthetics stops and does not walk.
Accordingly, reloading weights after activation is not required.
Many international groups currently study applications of non-
volatile memory for neural networks and enhanced computing
technologies, e.g., utilizing such memory as synaptic elements for
artificial neural networks (Hu et al., 2018; Zhang et al., 2020).

Resistive random access memory (ReRAM) has compared
to other non-volatile memory technologies, like e.g., Phase
Change Memories, the advantage (Ielmini and Wong, 2018)
to further decrease energy consumption, due to a unique
combination of multi-level programming and a high density
of integration (Milo et al., 2019). Furthermore, ReRAMs
are potentially compatible with the most commonly used
chip technology, complementary metal–oxide–semiconductor
process manufacturing. Multi-level programming means that
multiple bits can be stored on one ReRAM device. Therefore,
weights and matrix multiplications of a neural network can
be stored inside one ReRAM cell, and a neural network can
be implemented by saving all network weights directly on the
chip (Perez et al., 2020). As a result, external memory access
is avoided, which can lower the energy consumption drastically
(Knödtel et al., 2020). The high-density integration on the chip
allows for the ReRAM cells to be closely attached to digital
computation units, which decreases energy consumption by
avoiding long data paths on the chip. The use of ReRAM
technology yielded a 95% reduction in energy consumption for
the classification of bio-signals for atrial fibrillation compared
to a traditional approach (Pechmann et al., 2021). Therefore,
ReRAM technology is a promising candidate for realization of
personalized gait neuroprostheses relying on artificial neural
networks in digital (e.g., as ReRAM storage for weights) and
analog in-memory processing (e.g., as an in-memory processing
element itself).

However, several challenges exist for ReRAM technology
to be implemented on a neuroprosthesis. Currently, storage
of up to three bits on each ReRAM cell is possible (Milo
et al., 2021). However, energy consumption for reading out
information increases when more bits are stored on a cell. This

trade-off between energy consumption for read out and energy
saving from in-memory processing should be further investigated
to minimize overall energy consumption. Furthermore, storage
elements using ReRAM technology have a larger device-to-device
variability than traditional storage elements, which use volatile
technology. In particular, this device-to-device variability is a
problem for multi-bit storing (Fritscher et al., 2021b), which
is desired for embedded AI. Also the variability of switching
parameters and energy overheads of analog-to-digital and digital-
to-analog conversion is still a challenge for the reliable use
of ReRAMs as well as their comparatively low endurance, i.e.,
the number of allowable switching cycles of the ReRAM cells.
This is particularly challgengin for neuroprotheses, which have
higher time series data analysis requirements than e.g., a ReRAM
based analysator for detecting atrial fibrillation. To achieve
this, new research should address special training methods that
account for tolerable fluctuations by using learning techniques
such as noisy training or dropout layers (Fritscher et al.,
2021a).

5. SUMMARY AND CONCLUSION

Neuroprostheses can potentially restore function through
external activation of the central or peripheral nervous system.
We have presented our perspective on current challenges of
and future directions in the development of neuroprostheses
in stimulation of the peripheral and central nervous systems,
and outlined technical approaches to appropriate computer
architectures, as also summarized in Figure 2. A paramount
challenge is to restore mobility by effectively combining
neuroprosthetic and wearable robotic approaches and to align
neuroprostheses to the individual user’s needs and capabilities.

To this end, predictive simulations of the human-machine
system in dynamic tasks appear to be a promising approach
to customize design and control. Still, predictive simulations
can only provide rough representations of a paralysis and its
highly individual constraints, which cannot yet be covered by
recent neuromuscular modeling approaches, which, in turn,
hampers user-specific control and stimulation. We suggest
that future work should focus on improving neuromechanical
simulations of user-device interaction based on experimental
data, e.g., obtaining muscle parameters on the bench and
in real applications, and aim at prioritizing muscle activity
over robotic assistance. Combining a deeper understanding
of neuromechanical dynamics, particularly muscle-group
excitation through the central nervous system, with multimodal
sensor networks distributed across the human and the device
could foster model-based monitoring and management of
muscle fatigue.

For the central nervous system, real-time data processing,
ease of use of systems, and combining interfacing at multiple
levels are important future directions. Real-time data
processing is required to extract useful information from
noisy measurements of brain or spinal cord activity in a useful
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way. AI is a promising approach to enable this real-time
data processing, while also allowing for personalization, and
limiting the number of sensors required, improving ease of
use. Portable and easy-to-use systems should be designed
to allow for the adoption of neuroprostheses in real-life.
Furthermore, the combination of stimulation at the brain and
the spinal cord or the periphery should be further explored,
since these combinations were shown to have benefits over
stimulation at only one of these levels, and thereby improve
rehabilitation outcomes.

Regarding technological advances of the interface to
the computing architecture, a main current challenge is to
achieve low-energy electronics, real-time data processing,
and learning on the chip. Embedded AI has the potential
to process data in real-time, and allows for learning and
inference on the chip. To achieve low-energy consumption,the
embedded AI should use in-memory processing combined
with ReRAM technology. To allow the use of ReRAM
technology in gait neuroprostheses, we need further research
in combining ReRAM technology as multi-bit storage cells
with complementary metal–oxide–semiconductor process
manufacturing, the commonly-used chip technology.
Furthermore, the functionality of the ReRAM cells should
be expanded to improve reliability and mitigate the effect its
device-to-device variability.

In conclusion, a close cooperation between computer
architects, electrical engineers, material scientist, medical
experts, and biomechanical experts is required to
design appropriate neuroprostheses that are tailored
to the user’s need, adaptable, easy-to-use, and consume
little energy.
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