24 research outputs found

    The Dictyostelium discoideum acaA Gene Is Transcribed from Alternative Promoters during Aggregation and Multicellular Development

    Get PDF
    Background: Extracellular cAMP is a key extracellular signaling molecule that regulates aggregation, cell differentiation and morphogenesis during multi-cellular development of the social amoeba Dictyostelium discoideum. This molecule is produced by three different adenylyl cyclases, encoded by the genes acaA, acrA and acgA, expressed at different stages of development and in different structures. Methodology/Principal Findings: This article describes the characterization of the promoter region of the acaA gene, showing that it is transcribed from three different alternative promoters. The distal promoter, promoter 1, is active during the aggregation process while the more proximal promoters are active in tip-organiser and posterior regions of the structures. A DNA fragment containing the three promoters drove expression to these same regions and similar results were obtained by in situ hybridization. Analyses of mRNA expression by quantitative RT-PCR with specific primers for each of the three transcripts also demonstrated their different temporal patterns of expression. Conclusions/Significance: The existence of an aggregation-specific promoter can be associated with the use of cAMP as chemo-attractant molecule, which is specific for some Dictyostelium species. Expression at late developmental stages indicates that adenylyl cyclase A might play a more important role in post-aggregative development than previously considered

    Adenylyl cyclase A expression is tip-specific in Dictyostelium slugs and directs StatA nuclear translocation and CudA gene expression." Dev Biol 234(1

    No full text
    cAMP oscillations, generated by adenylyl cyclase A (ACA), coordinate cell aggregation in Dictyostelium and have also been implicated in organizer function during multicellular development. We used a gene fusion of the ACA promoter with a labile lacZ derivative to study the expression pattern of ACA. During aggregation, most cells expressed ACA, but thereafter expression was lost in all cells except those of the anterior tip. Before aggregation, ACA transcription was strongly upregulated by nanomolar cAMP pulses. Postaggregative transcription was sustained by nanomolar cAMP pulses, but downregulated by a continuous micromolar cAMP stimulus and by the stalk-cell-inducing factor DIF. Earlier work showed that the transcription factor StatA displays tip-specific nuclear translocation and directs tip-specific expression of the nuclear protein CudA, which is essential for culmination. Both StatA and CudA were present in nuclei throughout the entire slug in an aca null mutant that expresses ACA from the constitutive actin15 promoter. This suggests that the tip-specific expression of ACA directs tip-specific nuclear translocation of StatA and tip-specific expression of CudA

    Contrasting activities of the aggregative and late PDSA promoters in Dictyostelium development

    Get PDF
    AbstractExpression of the Dictyostelium PdsA gene from the aggregative (PdA) and late (PdL) promoter is essential for aggregation and slug morphogenesis, respectively. We studied the regulation of the PdA and PdL promoters in slugs using labile β-galactosidase (gal) reporter enzymes. PdL was active in prestalk cells as was also found with stable gal. PdA activity decreased strongly in slugs from all cells, except those at the rear. This is almost opposite to PdA activity traced with stable gal, where slugs showed sustained activity with highest levels at the front. PdA was down-regulated after aggregation irrespective of stimulation with any of the factors known to control gene expression. PdL activity was induced in cell suspension by cAMP and DIF acting in synergy. However, a DIF-less mutant showed normal PdL activity during development, suggesting that DIF does not control PdL in vivo. Dissection of the PdL promoter showed that all sequences essential for correct spatiotemporal control of promoter activity are downstream of the transcription start site in a region between −383 and −19 nucleotides relative to the start codon. Removal of nucleotides to position −364 eliminated responsiveness to DIF and cAMP, but normal PdL activity in prestalk cells in slugs was retained. Further 5′ deletions abolished all promoter activity. This result also indicates that the induction by DIF and cAMP as seen in cell suspensions is not essential for PdL activity in normal development

    Evolutionary origin of cAMP-based chemoattraction in the social amoebae

    Get PDF
    Phenotypic novelties can arise if integrated developmental pathways are expressed at new developmental stages and then recruited to serve new functions. We analyze the origin of a novel developmental trait of Dictyostelid amoebae: the evolution of cAMP as a developmental chemoattractant. We show that cAMP's role of attracting starving amoebae arose through recruitment of a pathway that originally evolved to coordinate fruiting body morphogenesis. Orthologues of the high-affinity cAMP receptor (cAR), cAR1, were identified in a selection of species that span the Dictyostelid phylogeny. The cAR1 orthologue from the basal species Dictyostelium minutum restored aggregation and development when expressed in an aggregation-defective mutant of the derived species Dictyostelium discoideum that lacks high-affinity cARs, thus demonstrating that the D. minutum cAR is a fully functional cAR. cAR1 orthologues from basal species are expressed during fruiting body formation, and only this process, and not aggregation, was disrupted by abrogation of cAR1 function. This is in contrast to derived species, where cAR1 is also expressed during aggregation and critically regulates this process. Our data show that coordination of fruiting body formation is the ancestral function of extracellular cAMP signaling, whereas its derived role in aggregation evolved by recruitment of a preexisting pathway to an earlier stage of development. This most likely occurred by addition of distal cis-regulatory regions to existing cAMP signaling genes

    Evolution of developmental cyclic adenosine monophosphate signaling in the Dictyostelia from an amoebozoan stress response

    No full text
    The Dictyostelid social amoebas represent one of nature’s several inventions of multicellularity. Though normally feeding as single cells, nutrient stress triggers collection of amoebas into colonies that form delicately shaped fruiting structures in which the cells differentiate into spores and up to three cell types to support the spore mass. Cyclic AMP (cAMP) plays a very dominant role in controlling morphogenesis and cell differentiation in the model species D. discoideum. As a secreted chemoattractant cAMP coordinates cell movement during aggregation and fruiting body morphogenesis. Secreted cAMP also controls gene expression at different developmental stages, while intracellular cAMP is extensively used to transduce the effect of other stimuli that control the developmental programme. In this review, I present an overview of the different roles of cAMP in the model D. discoideum and I summarize studies aimed to resolve how these roles emerged during Dictyostelid evolution

    Digital nature of the immediate-early transcriptional response

    No full text
    Stimulation of transcription by extracellular signals is a major component of a cell's decision making. Yet the quantitative relationship between signal and acute transcriptional response is unclear. One view is that transcription is directly graded with inducer concentration. In an alternative model, the response occurs only above a threshold inducer concentration. Standard methods for monitoring transcription lack continuous information from individual cells or mask immediate-early transcription by measuring downstream protein expression. We have therefore used a technique for directly monitoring nascent RNA in living cells, to quantify the direct transcriptional response to an extracellular signal in real time, in single cells. At increasing doses of inducer, increasing numbers of cells displayed a transcriptional response. However, over the same range of doses, the change in cell response strength, measured as the length, frequency and intensity of transcriptional pulses, was small, with considerable variation between cells. These data support a model in which cells have different sensitivities to developmental inducer and respond in a digital manner above individual stimulus thresholds. Biased digital responses may be necessary for certain forms of developmental specification. Limiting bias in responsiveness is required to reduce noise in positional signalling
    corecore