8 research outputs found

    Green Edge ice camp campaigns : understanding the processes controlling the under-ice Arctic phytoplankton spring bloom

    Get PDF
    The Green Edge initiative was developed to investigate the processes controlling the primary productivity and fate of organic matter produced during the Arctic phytoplankton spring bloom (PSB) and to determine its role in the ecosystem. Two field campaigns were conducted in 2015 and 2016 at an ice camp located on landfast sea ice southeast of Qikiqtarjuaq Island in Baffin Bay (67.4797∘ N, 63.7895∘ W). During both expeditions, a large suite of physical, chemical and biological variables was measured beneath a consolidated sea-ice cover from the surface to the bottom (at 360 m depth) to better understand the factors driving the PSB. Key variables, such as conservative temperature, absolute salinity, radiance, irradiance, nutrient concentrations, chlorophyll a concentration, bacteria, phytoplankton and zooplankton abundance and taxonomy, and carbon stocks and fluxes were routinely measured at the ice camp. Meteorological and snow-relevant variables were also monitored. Here, we present the results of a joint effort to tidy and standardize the collected datasets, which will facilitate their reuse in other Arctic studies

    Physical and optical properties of Arctic marine snow

    No full text
    L’ocĂ©an Arctique est marquĂ© par une forte saisonnalitĂ© qui se manifeste par la prĂ©sence d’une banquise permanente dont l’extension varie entre 6 et 15 millions de kilomĂštres carrĂ©. Interface plus ou moins permĂ©able, la banquise limite les Ă©changes atmosphĂšre - ocĂ©an et affecte le budget Ă©nergĂ©tique global en rĂ©flĂ©chissant une part importante du rayonnement incident. Le manteau neigeux qui se forme Ă  sa surface est un Ă©lĂ©ment essentiel notamment parce qu’il contribue fortement aux propriĂ©tĂ©s optiques de la banquise. D’une part par son albĂ©do, proche de l’unitĂ© dans le visible, qui retarde sensiblement la fonte estivale de la glace. Et d’autre part, il est majoritairement responsable de l’extinction verticale de l’éclairement dans la banquise. Or, la faible intensitĂ© lumineuse transmise Ă  la colonne d’eau constitue un facteur limitant important Ă  l’accumulation de biomasse des producteurs primaires souvent des micro-algues, Ă  la base des rĂ©seaux trophiques. Le manteau neigeux en surface, par ces propriĂ©tĂ©s physiques et leurs Ă©volutions temporelles, joue donc un rĂŽle essentiel en impactant directement l’initiation et l’amplitude de la floraison phytoplanctonique printaniĂšre. Dans le cadre du rĂ©chauffement climatique actuel, les mutations que subit la banquise : amincissement, rĂ©duction de son extension estivale et variations des Ă©paisseurs du manteau neigeux bouleversent d’ores et dĂ©jĂ  la production primaire arctique Ă  l’échelle globale et rĂ©gionale.Cette thĂšse vise Ă  mieux comprendre la contribution du manteau neigeux au transfert radiatif global de la banquise, afin de mieux estimer son impact sur la production primaire arctique. Elle s’appuie sur un jeu de donnĂ©es collectĂ© lors de deux campagnes de mesures sur la banquise en pĂ©riode de fonte. Les propriĂ©tĂ©s physiques de la neige, SSA et densitĂ©, permettent une modĂ©lisation prĂ©cise du transfert radiatif de la neige qui est validĂ©e, ensuite, par les propriĂ©tĂ©s optiques comprenant : albĂ©do, profils verticaux d’éclairement dans le manteau neigeux et transmittance Ă  travers la banquise.Au printemps, la neige marine, marquĂ©e par une importante hĂ©tĂ©rogĂ©nĂ©itĂ© spatiale, Ă©volue suivant quatre phases distinctes. La fonte, d’abord surfacique puis Ă©tendue Ă  toute l’épaisseur du manteau, se caractĂ©rise par une baisse de la SSA de 25-60 m2kg-1 Ă  moins de 3 m2kg-1 provoquant une diminution de l’albĂ©do dans le proche infrarouge puis Ă  toute longueur d’onde ainsi qu'une augmentation de l’éclairement transmis Ă  la colonne d’eau. Cette pĂ©riode est chaotique, et marquĂ©e par une forte variabilitĂ© temporelle des propriĂ©tĂ©s optiques causĂ©es par la succession d’épisodes de fonte et de chutes de neige. Les propriĂ©tĂ©s physiques de la neige sont utilisĂ©es par un modĂšle de transfert radiatif afin de simuler les profils verticaux d'Ă©clairement, l’albĂ©do et la transmittance de la banquise. La comparaison entre ces simulations et les profils d’éclairement mesurĂ©s met en Ă©vidence la prĂ©sence d’impuretĂ©s dans la neige dont leurs natures et leurs concentrations sont estimĂ©es. En moyenne, la neige Ă©chantillonnĂ©e contenait 600 ngg-1 de poussiĂšres minĂ©rales et 10 nng-1 de suies qui rĂ©duisaient par deux l’éclairement transmis Ă  la colonne d’eau. Enfin, la modĂ©lisation de l’éclairement Ă  toute profondeur de la banquise, reprĂ©sentĂ©e de maniĂšre innovante par des isolumes, est mise en relation avec l’évolution temporelle de la biomasse dans la glace. Il apparaĂźt que la croissance des algues de glace est systĂ©matiquement corrĂ©lĂ©e avec une augmentation de l’éclairement, et ce, jusqu’à des niveaux d’intensitĂ© de l’ordre de 0.4 uEm-2s-2. Ces variations d’éclairement sont causĂ©es par le mĂ©tamorphisme et la fonte de la neige en surface.The Arctic ocean shows a very strong seasonality trough the permanent presence of sea ice whose extent varies from 6 to 15 millions km2. As an interface, sea ice limits ocean - atmosphere interactions and impacts the global energy budget by reflecting most of the short-wave incoming radiations. The snow cover, at the surface, is a key element contributing to the optical properties of sea ice. Snow enhances further the surface albedo and thus delays the onset of the ice melt. In addition, snow is the main responsible for the vertical light extinction in sea ice. However, after the polar night, this low light transmitted to the water column is a limiting factor for primary production at the base of the oceanic food web. The snow cover, through the temporal evolution of its physical properties, plays a key role controlling the magnitude and the timing of the phytoplanktonic bloom. In the actual global warming context, sea ice undergoes radical changes including summer extent reduction, thinning and shifts in snow thickness, all of which already alter Arctic primary production on a regional and global scale.This PhD thesis aims to better constrain the snow cover contributions to the radiative transfer of sea ice and its impact on Arctic primary production. It is based on a dataset collected during two sampling campaigns on landfast sea ice. Physical properties of snow such as snow specific surface area (SSA) and density allow a precise modeling of the radiative transfer which is then validated by optical measurements including albedo, transmittance through sea ice and vertical profiles of irradiance in the snow.During the melt season, marine snow which shows strong spatial heterogeneity evolves fol- lowing four distinctive phases. The melting, which first appears at the surface and gradually propagates to the entire snowpack, is characterized by a decrease in SSA from 25-60 m2kg-1 to less than 3 m2kg-1 resulting in a decrease in albedo and an increase in sea ice transmittance. This is a chaotic period, where optical properties show a very strong temporal variability induced by alternative episodes of surface melting and snowfalls. The physical properties of snow are used in a radiative transfer model in order to calculate albedo, transmittance through sea ice and vertical profiles of irradiance at all depths. The comparison between these simulations and measured vertical profiles of irradiance in snow highlights the presence of snow absorbing impurities which were subsequently qualitatively and quantitatively studied. In average, impurities were composed of 660 ngg-1 of mineral dust and 10 ngg-1 of black carbon. They were responsible for a two-fold reduction in light transmitted through sea ice. The light extinction, calculated at all depths in sea ice, and represented by isolums, was compared to the temporal evolution of ice algae biomass. The results show that every significant growth in ice algae population is related to an increase of light in the ice. These growths were observed even at very low light intensities of 0.4 uEm-2s-2. Light variations in the ice were linked by snow metamorphism and snow melting at the surface

    Propriétés physiques et optiques du manteau neigeux sur la banquise en arctique en période de fonte

    Get PDF
    "ThĂšse en cotutelle : Doctorat interuniversitaire en ocĂ©anographie, UniversitĂ© Laval, QuĂ©bec, Canada, PhilosophiĂŠ doctor (Ph. D.) et UniversitĂ© Joseph Fourier - Grenoble I, Grenoble, France"L’ocĂ©an Arctique est marquĂ© par une forte saisonnalitĂ© qui se manifeste par la prĂ©sence d’une banquise permanente dont l’extension varie entre 6 et 15 × 106 km2. Interface plus ou moins permĂ©able, la banquise limite les Ă©changes atmosphĂšre - ocĂ©an et affecte le budget Ă©nergĂ©tique global en rĂ©flĂ©chissant une part importante du rayonnement incident. Le manteau neigeux qui se forme Ă  sa surface est un Ă©lĂ©ment essentiel notamment parce qu’il contribue fortement aux propriĂ©tĂ©s optiques de la banquise. D’une part par son albĂ©do, proche de l’unitĂ© dans le visible, qui retarde sensiblement la fonte estivale de la glace. Et d’autre part, il est majoritairement responsable de l’extinction verticale de l’éclairement dans la banquise. Or, la faible intensitĂ© lumineuse transmise Ă  la colonne d’eau constitue un facteur limitant important Ă  l’accumulation de biomasse des producteurs primaires souvent des micro-algues, Ă  la base des rĂ©seaux trophiques. Le manteau neigeux en surface, par ces propriĂ©tĂ©s physiques et leurs Ă©volutions temporelles, joue donc un rĂŽle essentiel en impactant directement l’initiation et l’amplitude de la floraison phytoplanctonique printaniĂšre. Dans le cadre du rĂ©chauffement climatique actuel, les mutations que subit la banquise : amincissement, rĂ©duction de son extension estivale et variations des Ă©paisseurs du manteau neigeux bouleversent d’ores et dĂ©jĂ  la production primaire arctique Ă  l’échelle globale et rĂ©gionale. Cette thĂšse vise Ă  mieux comprendre la contribution du manteau neigeux au transfert radiatif global de la banquise et de mieux estimer son impact sur la production primaire arctique. Elle s’appuie sur un jeu de donnĂ©es collectĂ©s lors de deux campagnes de mesures sur la banquise en pĂ©riode de fonte. Les propriĂ©tĂ©s physiques de la neige, SSA et densitĂ©, permettent une modĂ©lisation prĂ©cise du transfert radiatif de la neige qui est validĂ©e, ensuite, par les propriĂ©tĂ©s optiques, comprenant : albĂ©do, profils verticaux d’éclairement dans le manteau neigeux et transmittance `a travers la banquise. Au printemps, la neige marine, marquĂ©e par une importante hĂ©tĂ©rogĂ©nĂ©itĂ© spatiale, Ă©volue suivant quatre phases distinctes. La fonte, d’abord surfacique puis Ă©tendue Ă  toute l’épaisseur du manteau, se caractĂ©rise par une baisse de la SSA de 25-60 m2 kg−1 Ă  moins de 3 m2 kg−1 provoquant une diminution de l’albĂ©do dans le proche infrarouge puis Ă  toute longueur d’onde ainsi qu’une augmentation de l’éclairement transmis Ă  la colonne d’eau. Cette pĂ©riode est chaotique, marquĂ©e par une forte variabilitĂ© temporelle des propriĂ©tĂ©s optiques causĂ©es par la succession d’épisodes de fonte et de chutes de neige. Les propriĂ©tĂ©s physiques de la neige sont utilisĂ©es par un modĂšle de transfert radiatif afin de simuler les profils verticaux d’éclairement, l’albĂ©do et la transmittance de la banquise. La comparaison entre ces simulations et les profils d’éclairement mesurĂ©s met en Ă©vidence la prĂ©sence d’impuretĂ©s dans la neige dont leurs natures et leurs concentrations sont estimĂ©es. En moyenne, la neige Ă©chantillonnĂ©e contenait 650 ng g−1 de poussiĂšres minĂ©rales et 10 ng g−1 de suies qui rĂ©duisaient par deux l’éclairement transmis Ă  la colonne d’eau. Enfin, la modĂ©lisation de l’éclairement Ă  toute profondeur de la banquise, reprĂ©sentĂ©e de maniĂšre innovante par des isolumes, est mise en relation avec l’évolution temporelle de la biomasse dans la glace. Il apparaĂźt que la croissance des algues de glace est systĂ©matiquement corrĂ©lĂ©e avec une augmentation de l’éclairement, et ce, jusqu’`a des niveaux d’intensitĂ© de l’ordre de 0.4 ÎŒE m−2 s−1. Ces variations d’Žéclairement sont dues au mĂ©tamorphisme et `a la fonte de la neige en surface. Mots clĂ©s : Transfert radiatif, neige marine, albĂ©do, transmittance, impuretĂ©s, algues de glaceThe Arctic ocean shows a very strong seasonality trough the permanent presence of sea ice whose extent varies from 6 to 15 × 106 km2. As an interface, sea ice limits ocean - atmosphere interactions and impacts the global energy budget by reflecting most of the short-wave incoming radiations. The snow cover, at the surface, is a key element contributing to the optical properties of sea ice. Snow enhances further the surface albedo and thus delays the onset of the ice melt. In addition, snow is the main responsible for the vertical light extinction in sea ice. However, after the polar night, this low light transmitted to the water column is a limiting factor for primary production at the base of the oceanic food web. The snow cover, through the temporal evolution of its physical properties, plays a key role controlling the magnitude and the timing of the phytoplanktonic bloom. In the actual global warming context, sea ice undergoes radical changes including summer extent reduction, thinning and shifts in snow thickness, all of which already alter Arctic primary production on a regional and global scale. This PhD thesis aims to better constrain the snow cover contributions to the radiative transfer of sea ice and its impact on Arctic primary production. It is based on a dataset collected during two sampling campaigns on landfast sea ice. Physical properties of snow such as snow specific surface area (SSA) and density allow a precise modeling of the radiative transfer which is then validated by optical measurements including albedo, transmittance through sea ice and vertical profiles of irradiance in the snow. During the melt season, marine snow which shows strong spatial heterogeneity evolves fol- lowing four distinctive phases. The melting, which first appears at the surface and gradually propagates to the entire snowpack, is characterized by a decrease in SSA from 25-60 m2 kg−1 to less than 3 m2 kg−1 resulting in a decrease in albedo and an increase in sea ice transmittance. This is a chaotic period, where optical properties show a very strong temporal variability induced by alternative episodes of surface melting and snowfalls. The physical properties of snow are used in a radiative transfer model in order to calculate albedo, transmittance through sea ice and vertical profiles of irradiance at all depths. The comparison between these simulations and measured vertical profiles of irradiance in snow highlights the presence of snow absorbing impurities which were subsequently qualitatively and quantitatively studied. In average, impurities were composed of 650 ng g−1 of mineral dust and 10 ng g−1 of black carbon. They were responsible for a two-fold reduction in light transmitted through sea ice. The light extinction, calculated at all depths in sea ice, and represented by isolums, was compared to the temporal evolution of ice algae biomass. The results show that every significant growth in ice algae population is related to an increase of light in the ice. These growths were observed even at very low light intensities of 0.4 ÎŒE m−2 s−1. Light variations in the ice were linked by snow metamorphism and snow melting at the surface. Keywords : Radiative transfer, marine snow, snow albedo, sea ice transmittance, snow impurities, ice algae

    Propriétés physiques et optiques du manteau neigeux sur la banquise arctique

    No full text
    The Arctic ocean shows a very strong seasonality trough the permanent presence of sea ice whose extent varies from 6 to 15 millions km2. As an interface, sea ice limits ocean - atmosphere interactions and impacts the global energy budget by reflecting most of the short-wave incoming radiations. The snow cover, at the surface, is a key element contributing to the optical properties of sea ice. Snow enhances further the surface albedo and thus delays the onset of the ice melt. In addition, snow is the main responsible for the vertical light extinction in sea ice. However, after the polar night, this low light transmitted to the water column is a limiting factor for primary production at the base of the oceanic food web. The snow cover, through the temporal evolution of its physical properties, plays a key role controlling the magnitude and the timing of the phytoplanktonic bloom. In the actual global warming context, sea ice undergoes radical changes including summer extent reduction, thinning and shifts in snow thickness, all of which already alter Arctic primary production on a regional and global scale.This PhD thesis aims to better constrain the snow cover contributions to the radiative transfer of sea ice and its impact on Arctic primary production. It is based on a dataset collected during two sampling campaigns on landfast sea ice. Physical properties of snow such as snow specific surface area (SSA) and density allow a precise modeling of the radiative transfer which is then validated by optical measurements including albedo, transmittance through sea ice and vertical profiles of irradiance in the snow.During the melt season, marine snow which shows strong spatial heterogeneity evolves fol- lowing four distinctive phases. The melting, which first appears at the surface and gradually propagates to the entire snowpack, is characterized by a decrease in SSA from 25-60 m2kg-1 to less than 3 m2kg-1 resulting in a decrease in albedo and an increase in sea ice transmittance. This is a chaotic period, where optical properties show a very strong temporal variability induced by alternative episodes of surface melting and snowfalls. The physical properties of snow are used in a radiative transfer model in order to calculate albedo, transmittance through sea ice and vertical profiles of irradiance at all depths. The comparison between these simulations and measured vertical profiles of irradiance in snow highlights the presence of snow absorbing impurities which were subsequently qualitatively and quantitatively studied. In average, impurities were composed of 660 ngg-1 of mineral dust and 10 ngg-1 of black carbon. They were responsible for a two-fold reduction in light transmitted through sea ice. The light extinction, calculated at all depths in sea ice, and represented by isolums, was compared to the temporal evolution of ice algae biomass. The results show that every significant growth in ice algae population is related to an increase of light in the ice. These growths were observed even at very low light intensities of 0.4 uEm-2s-2. Light variations in the ice were linked by snow metamorphism and snow melting at the surface.L’ocĂ©an Arctique est marquĂ© par une forte saisonnalitĂ© qui se manifeste par la prĂ©sence d’une banquise permanente dont l’extension varie entre 6 et 15 millions de kilomĂštres carrĂ©. Interface plus ou moins permĂ©able, la banquise limite les Ă©changes atmosphĂšre - ocĂ©an et affecte le budget Ă©nergĂ©tique global en rĂ©flĂ©chissant une part importante du rayonnement incident. Le manteau neigeux qui se forme Ă  sa surface est un Ă©lĂ©ment essentiel notamment parce qu’il contribue fortement aux propriĂ©tĂ©s optiques de la banquise. D’une part par son albĂ©do, proche de l’unitĂ© dans le visible, qui retarde sensiblement la fonte estivale de la glace. Et d’autre part, il est majoritairement responsable de l’extinction verticale de l’éclairement dans la banquise. Or, la faible intensitĂ© lumineuse transmise Ă  la colonne d’eau constitue un facteur limitant important Ă  l’accumulation de biomasse des producteurs primaires souvent des micro-algues, Ă  la base des rĂ©seaux trophiques. Le manteau neigeux en surface, par ces propriĂ©tĂ©s physiques et leurs Ă©volutions temporelles, joue donc un rĂŽle essentiel en impactant directement l’initiation et l’amplitude de la floraison phytoplanctonique printaniĂšre. Dans le cadre du rĂ©chauffement climatique actuel, les mutations que subit la banquise : amincissement, rĂ©duction de son extension estivale et variations des Ă©paisseurs du manteau neigeux bouleversent d’ores et dĂ©jĂ  la production primaire arctique Ă  l’échelle globale et rĂ©gionale.Cette thĂšse vise Ă  mieux comprendre la contribution du manteau neigeux au transfert radiatif global de la banquise, afin de mieux estimer son impact sur la production primaire arctique. Elle s’appuie sur un jeu de donnĂ©es collectĂ© lors de deux campagnes de mesures sur la banquise en pĂ©riode de fonte. Les propriĂ©tĂ©s physiques de la neige, SSA et densitĂ©, permettent une modĂ©lisation prĂ©cise du transfert radiatif de la neige qui est validĂ©e, ensuite, par les propriĂ©tĂ©s optiques comprenant : albĂ©do, profils verticaux d’éclairement dans le manteau neigeux et transmittance Ă  travers la banquise.Au printemps, la neige marine, marquĂ©e par une importante hĂ©tĂ©rogĂ©nĂ©itĂ© spatiale, Ă©volue suivant quatre phases distinctes. La fonte, d’abord surfacique puis Ă©tendue Ă  toute l’épaisseur du manteau, se caractĂ©rise par une baisse de la SSA de 25-60 m2kg-1 Ă  moins de 3 m2kg-1 provoquant une diminution de l’albĂ©do dans le proche infrarouge puis Ă  toute longueur d’onde ainsi qu'une augmentation de l’éclairement transmis Ă  la colonne d’eau. Cette pĂ©riode est chaotique, et marquĂ©e par une forte variabilitĂ© temporelle des propriĂ©tĂ©s optiques causĂ©es par la succession d’épisodes de fonte et de chutes de neige. Les propriĂ©tĂ©s physiques de la neige sont utilisĂ©es par un modĂšle de transfert radiatif afin de simuler les profils verticaux d'Ă©clairement, l’albĂ©do et la transmittance de la banquise. La comparaison entre ces simulations et les profils d’éclairement mesurĂ©s met en Ă©vidence la prĂ©sence d’impuretĂ©s dans la neige dont leurs natures et leurs concentrations sont estimĂ©es. En moyenne, la neige Ă©chantillonnĂ©e contenait 600 ngg-1 de poussiĂšres minĂ©rales et 10 nng-1 de suies qui rĂ©duisaient par deux l’éclairement transmis Ă  la colonne d’eau. Enfin, la modĂ©lisation de l’éclairement Ă  toute profondeur de la banquise, reprĂ©sentĂ©e de maniĂšre innovante par des isolumes, est mise en relation avec l’évolution temporelle de la biomasse dans la glace. Il apparaĂźt que la croissance des algues de glace est systĂ©matiquement corrĂ©lĂ©e avec une augmentation de l’éclairement, et ce, jusqu’à des niveaux d’intensitĂ© de l’ordre de 0.4 uEm-2s-2. Ces variations d’éclairement sont causĂ©es par le mĂ©tamorphisme et la fonte de la neige en surface

    Development and calibration of an automatic spectral albedometer to estimate near-surface snow SSA time series

    Get PDF
    International audienceSpectral albedo of the snow surface in the visible/near-infrared range has been measured for 3 years by an automatic spectral radiometer installed at Dome C (75 ‱ S, 123 ‱ E) in Antarctica in order to retrieve the specific surface area (SSA) of superficial snow. This study focuses on the uncertainties of the SSA retrieval due to instrumental and data processing limitations. We find that when the solar zenith angle is high, the main source of uncertainties is the imperfect angular response of the light collectors. This imperfection introduces a small spurious wavelength-dependent trend in the albedo spectra which greatly affects the SSA retrieval. By modeling this effect, we show that for typical snow and illumination conditions encountered at Dome C, retrieving SSA with an accuracy better than 15 % (our target) requires the difference of response between 400 and 1100 nm to not exceed 2 %. Such a small difference can be achieved only by (i) a careful design of the collectors, (ii) an ad hoc correction of the spectra using the actual measured angular response of the collectors, and (iii) for solar zenith angles less than 75 ‱. The 3-year time series of retrieved SSA features a 3-fold decrease every summer which is significantly larger than the estimated uncertainties. This highlights the high dynamics of near-surface SSA at Dome C

    Études de santĂ©

    No full text
    La crise du Covid-19 a exacerbĂ© et mis au grand jour les difficultĂ©s du systĂšme de santĂ© français, notamment sur le volet de la gestion des ressources humaines : pĂ©nuries de personnel, Ă©puisement professionnel, rĂ©munĂ©rations insuffisantes
 Beaucoup de territoires connaissaient dĂ©jĂ  ces maux : les dĂ©serts mĂ©dicaux ne datent pas d’hier, pas plus que les problĂšmes de coordination des soins pour la prise en charge des maladies chroniques ou les lacunes en termes d’accompagnement au grand Ăąge. Tous ces problĂšmes ne viennent pas de la formation et tous ne trouvent pas leur solution dans les rĂ©formes conduites dans ce domaine, mais la façon dont l’appareil de formation dĂ©livre les connaissances et fabrique les spĂ©cialitĂ©s, son organisation (entre les universitĂ©s, les CHU, les facultĂ©s, les instituts
 et les territoires), les politiques en matiĂšre d’admission et de flux d’étudiants (les fameux numerus clausus et quotas), tout cela façonne le systĂšme de santĂ©, influe sur les possibilitĂ©s de coopĂ©ration et les conflits et modĂšle le rapport Ă  l’innovation et la distribution des ressources sur le terrain. Si la santĂ© est un bien commun, la rĂ©forme des Ă©tudes est l’affaire de tous. Ce livre, qui donne la parole aux acteurs (enseignants, professionnels de santĂ©, chercheurs, Ă©tudiants et acteurs des politiques), place les rĂ©formes actuelles des Ă©tudes de santĂ© Ă  la portĂ©e du plus grand nombre

    Green Edge ice camp campaigns: understanding the processes controlling the under-ice Arctic phytoplankton spring bloom

    Get PDF
    International audienceThe Green Edge initiative was developed to investigate the processes controlling the primary productivity and the fate of organic matter produced during the Arctic phytoplankton spring bloom (PSB) and to determine its role in the ecosystem. Two field campaigns were conducted in 2015 and 2016 at an ice camp located on landfast sea ice southeast of Qikiqtarjuaq Island in Baffin Bay (67.4797N, 63.7895W). During both expeditions, a large suite of physical, chemical and biological variables was measured beneath a consolidated sea ice cover from the surface to the bottom at 360 m depth to better understand the factors driving the PSB. Key variables such as temperature, salinity, radiance, irradiance, nutrient concentrations, chlorophyll-a concentration, bacteria, phytoplankton and zooplankton abundance and taxonomy, carbon stocks and fluxes were routinely measured at the ice camp. Here, we present the results of a joint effort to tidy and standardize the collected data sets that will facilitate their reuse in other Arctic studies. The dataset is available at http://www.seanoe.org/data/00487/59892/ (Massicotte et al., 2019a)
    corecore