74 research outputs found

    Design, development and delivery of one /1/ breadboard and three /3/ production units of a 75 VA integrated static inverter Monthly report no. 15

    Get PDF
    Flip-flop arrays, power transistors, epitaxial stress, and other technological developments in integrated static inverter progra

    Oscillation threshold of a clarinet model: a numerical continuation approach

    Full text link
    This paper focuses on the oscillation threshold of single reed instruments. Several characteristics such as blowing pressure at threshold, regime selection, and playing frequency are known to change radically when taking into account the reed dynamics and the flow induced by the reed motion. Previous works have shown interesting tendencies, using analytical expressions with simplified models. In the present study, a more elaborated physical model is considered. The influence of several parameters, depending on the reed properties, the design of the instrument or the control operated by the player, are studied. Previous results on the influence of the reed resonance frequency are confirmed. New results concerning the simultaneous influence of two model parameters on oscillation threshold, regime selection and playing frequency are presented and discussed. The authors use a numerical continuation approach. Numerical continuation consists in following a given solution of a set of equations when a parameter varies. Considering the instrument as a dynamical system, the oscillation threshold problem is formulated as a path following of Hopf bifurcations, generalizing the usual approach of the characteristic equation, as used in previous works. The proposed numerical approach proves to be useful for the study of musical instruments. It is complementary to analytical analysis and direct time-domain or frequency-domain simulations since it allows to derive information that is hardly reachable through simulation, without the approximations needed for analytical approach

    Interaction of reed and acoustic resonator in clarinetlike systems

    Full text link
    Sound emergence in clarinetlike instruments is investigated in terms of instability of the static regime. Various models of reed-bore coupling are considered, from the pioneering work of Wilson and Beavers ["Operating modes of the clarinet", J. Acoust. Soc. Am. 56, 653--658 (1974)] to more recent modeling including viscothermal bore losses and vena contracta at the reed inlet. The pressure threshold above which these models may oscillate as well as the frequency of oscillation at threshold are calculated. In addition to Wilson and Beavers' previous conclusions concerning the role of the reed damping in the selection of the register the instrument will play on, the influence of the reed motion induced flow is also emphasized, particularly its effect on playing frequencies, contributing to reduce discrepancies between Wilson and Beavers' experimental results and theory, despite discrepancies still remain concerning the pressure threshold. Finally, analytical approximations of the oscillating solution based on Fourier series expansion are obtained in the vicinity of the threshold of oscillation. This allows to emphasize the conditions which determine the nature of the bifurcation (direct or inverse) through which the note may emerge, with therefore important consequences on the musical playing performances

    A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia

    Get PDF
    International audienceRelevant preclinical mouse models are crucial to screen new therapeutic agents for acute myeloid leukemia (AML). Current in vivo models based on the use of patient samples are not easy to establish and manipulate in the laboratory. Our objective was to develop robust xenograft models of human AML using well-characterized cell lines as a more accessible and faster alternative to those incorporating the use of patient-derived AML cells. Five widely used AML cell lines representing various AML subtypes were transplanted and expanded into highly immunodeficient non-obese diabetic/LtSz-severe combined immunodeficiency IL2R gamma(null)(c) mice (for example, cell line-derived xenografts). We show here that bone marrow sublethal conditioning with busulfan or irradiation has equal efficiency for the xenotransplantation of AML cell lines. Although higher number of injected AML cells did not change tumor engraftment in bone marrow and spleen, it significantly reduced the overall survival in mice for all tested AML cell lines. On the basis of AML cell characteristics, these models also exhibited a broad range of overall mouse survival, engraftment, tissue infiltration and aggressiveness. Thus, we have established a robust, rapid and straightforward in vivo model based on engraftment behavior of AML cell lines, all vital prerequisites for testing new therapeutic agents in preclinical studies

    Contribution to harmonic balance calculations of self-sustained periodic oscillations with focus on single-reed instruments

    Get PDF
    International audienceThe harmonic balance method ͑HBM͒ was originally developed for finding periodic solutions of electronical and mechanical systems under a periodic force, but has been adapted to self-sustained musical instruments. Unlike time-domain methods, this frequency-domain method does not capture transients and so is not adapted for sound synthesis. However, its independence of time makes it very useful for studying any periodic solution, whether stable or unstable, without care of particular initial conditions in time. A computer program for solving general problems involving nonlinearly coupled exciter and resonator, HARMBAL, has been developed based on the HBM. The method as well as convergence improvements and continuation facilities are thoroughly presented and discussed in the present paper. Applications of the method are demonstrated, especially on problems with severe difficulties of convergence: the Helmholtz motion ͑square signals͒ of single-reed instruments when no losses are taken into account, the reed being modeled as a simple spring

    Features of Mild-to-Moderate COVID-19 Patients with Dysphonia

    Get PDF
    Introduction To explore the prevalence of dysphonia in European patients with mild-to-moderate COVID-19 and the clinical features of dysphonic patients. Methods The clinical and epidemiological data of 702 patients with mild-to-moderate COVID-19 were collected from 19 European Hospitals. The following data were extracted: age, sex, ethnicity, tobacco consumption, comorbidities, general and otolaryngological symptoms. Dysphonia and otolaryngological symptoms were self-assessed through a 4-point scale. The prevalence of dysphonia, as part of the COVID-19 symptoms, was assessed. The outcomes were compared between dysphonic and non-dysphonic patients. The association between dysphonia severity and outcomes was studied through Bayesian analysis. Results A total of 188 patients were dysphonic, accounting for 26.8% of cases. Females developed more frequently dysphonia than males (p=0.022). The proportion of smokers was significantly higher in the dysphonic group (p=0.042). The prevalence of the following symptoms was higher in dysphonic patients compared with non-dysphonic patients: cough, chest pain, sticky sputum, arthralgia, diarrhea, headache, fatigue, nausea and vomiting. The severity of dyspnea, dysphagia, ear pain, face pain, throat pain and nasal obstruction was higher in dysphonic group compared with non-dysphonic group. There were significant associations between the severity of dysphonia, dysphagia and cough. Conclusion Dysphonia may be encountered in a quarter of patients with mild-to-moderate COVID-19 and should be considered as a symptom list of the infection. Dysphonic COVID-19 patients are more symptomatic than non-dysphonic individuals. Future studies are needed to investigate the relevance of dysphonia in the COVID-19 clinical presentation

    «La relation de limitation et d’exception dans le français d’aujourd’hui : exceptĂ©, sauf et hormis comme pivots d’une relation algĂ©brique »

    Get PDF
    L’analyse des emplois prĂ©positionnels et des emplois conjonctifs d’ “exceptĂ©â€, de “sauf” et d’ “hormis” permet d’envisager les trois prĂ©positions/conjonctions comme le pivot d’un binĂŽme, comme la plaque tournante d’une structure bipolaire. PlacĂ©es au milieu du binĂŽme, ces prĂ©positions sont forcĂ©es par leur sĂ©mantisme originaire dĂ»ment mĂ©taphorisĂ© de jouer le rĂŽle de marqueurs d’inconsĂ©quence systĂ©matique entre l’élĂ©ment se trouvant Ă  leur gauche et celui qui se trouve Ă  leur droite. L’opposition qui surgit entre les deux Ă©lĂ©ments n’est donc pas une incompatibilitĂ© naturelle, intrinsĂšque, mais extrinsĂšque, induite. Dans la plupart des cas (emplois limitatifs), cette opposition prend la forme d’un rapport entre une « classe » et le « membre (soustrait) de la classe », ou bien entre un « tout » et une « partie » ; dans d’autres (emplois exceptifs), cette opposition se manifeste au contraire comme une attaque de front portĂ©e par un « tout » Ă  un autre « tout ». De plus, l’inconsĂ©quence induite mise en place par la prĂ©position/conjonction paraĂźt, en principe, tout Ă  fait insurmontable. Dans l’assertion « les Ă©cureuils vivent partout, sauf en Australie » (que l’on peut expliciter par « Les Ă©cureuils vivent partout, sauf [qu’ils ne vivent pas] en Australie »), la prĂ©position semble en effet capable d’impliquer le prĂ©dicat principal avec signe inverti, et de bĂątir sur une telle implication une sorte de sous Ă©noncĂ© qui, Ă  la rigueur, est totalement inconsĂ©quent avec celui qui le prĂ©cĂšde (si « les Ă©cureuils ne vivent pas en Australie », le fait qu’ils « vivent partout » est faux). NĂ©anmoins, l’analyse montre qu’alors que certaines de ces oppositions peuvent enfin ĂȘtre dĂ©passĂ©es, d’autres ne le peuvent pas. C’est, respectivement, le cas des relations limitatives et des relations exceptives. La relation limitative, impliquant le rapport « tout » - « partie », permet de rĂ©soudre le conflit dans les termes d’une somme algĂ©brique entre deux sous Ă©noncĂ©s pourvus de diffĂ©rent poids informatif et de signe contraire. Les valeurs numĂ©riques des termes de la somme Ă©tant dĂ©sĂ©quilibrĂ©es, le rĂ©sultat est toujours autre que zĂ©ro. La relation exceptive, au contraire, qui n’implique pas le rapport « tout » - « partie », n’est pas capable de rĂ©soudre le conflit entre deux sous Ă©noncĂ©s pourvus du mĂȘme poids informatif et en mĂȘme temps de signe contraire : les valeurs numĂ©riques des termes de la somme Ă©tant symĂ©triques et Ă©gales, le rĂ©sultat sera toujours Ă©quivalent Ă  zĂ©ro
    • 

    corecore