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Direct Simulation of Reed
Wind Instruments

Stefan Bilbao
Music/Acoustics and Fluid Dynamics Group
School of Physics
University of Edinburgh
James Clerk Maxwell Building
Edinburgh EH9 3JZ UK
sbilbao@staffmail.ed.ac.uk

The synthesis of sound based on physical models of
wind instruments has traditionally been carried out
in a variety of ways. Digital waveguides (Smith 1986;
Scavone 1997; van Walstijn and Campbell 2003; van
Walstijn 2007) have been extensively explored, espe-
cially in the special cases of cylindrical and conical
tubes, in which case they yield an extreme efficiency
advantage. A related scattering method, wave digital
filtering (Fettweis 1986), is also used to connect
waveguide tube models with lumped elements such
as an excitation mechanism (Bilbao, Bensa, and
Kronland-Martinet 2003) or toneholes (van Walstijn
and Scavone 2000). Another body of techniques,
closely related to digital waveguides, and based
around impedance descriptions, has been developed
recently (Guillemain 2004). Other techniques, em-
ploying finite-difference approximations to the reed
model (as opposed to wave- and scattering-based
methods) bear a closer resemblance to the direct
simulation methods to be discusssed here (Avanzini
and Rocchesso 2002; van Walstijn and Avanzini
2007; Avanzini and van Walstijn 2004). Most of
these methods owe a great deal to the much earlier
treatment of self-sustained musical oscillators by
McIntyre, Schumacher and Woodhouse (1983).

All of these methods rely, to some degree, on
simplified descriptions of the resonator (tube). For
example, digital waveguides make use of a traveling
wave decomposition, accompanied by frequency-
domain (impedance or reflectance) characterizations
of lumped elements or phenomena such as bell
radiation and tone holes. Other methods make
use of the Green’s function or impulse response
of the tube directly (McIntyre, Schumacher and
Woodhouse 1983). These methods are, in the end,
implemented in the time domain, but the notion
of the spatial extent of the tube is suppressed: The
system is viewed in an input–output sense. When it
comes to sound synthesis, however, it is not clear
that it is necessary to do so; once one has arrived
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at a satisfactory model of a musical instrument,
written as a time-space partial-differential-equation
(PDE) system (for the resonator) coupled to ordinary
differential equations (ODEs, the excitation element
and a radiation boundary condition), one may
proceed directly to a synthesis algorithm without
invoking any notion of frequency, impedance, wave
variables, or reflectance, or otherwise making any
hypotheses about the dynamics of the air in the tube.
Though one of course loses the powerful analysis
perspective mentioned previously, the treatment of
the resonator becomes independent of any particular
bore profile, and the system as a whole is now
much more amenable to interesting extensions
involving, e.g., time-varying and nonlinear effects
which do indeed play a role in wind instruments, and
which are not easily approached using impedance or
scattering concepts.

In the present case, concerned with audio syn-
thesis (and thus efficiency), the model remains
one-dimensional. Standard numerical techniques,
and, in particular, finite-difference schemes, have
been applied (infrequently) to acoustic tube model-
ing for some time, especially in the case of speech
synthesis (see, e.g., the recent paper by van den Doel
and Ascher 2008 and the much older but prescient
and comprehensive treatment of Portnoff 1973).
Finite-difference schemes have also been applied in
multi-dimensional spaces, in the setting of acousti-
cal analysis of wind instruments, though generally
not directly for synthesis (e.g., Nederveen 1998;
Noreland 2002).

In this article, a standard model of a reed wind
instrument is presented first, followed by the
development of a finite-difference time-domain
algorithm, including some discussion of imple-
mentation details, such as the operation count
and computability issues. Connections to tone-
holes are then introduced, followed by simulation
results.

This article appeared, in a modified form, at a
recent conference (Bilbao 2008), and also forms the
basis for a section in a new text (Bilbao 2009).
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Figure 1. Acoustic tube of
variable cross-sectional
area S(x).

A Standard Wind Instrument Model

Instrument Body

A standard model of one-dimensional linear wave
propagation in an acoustic tube (Morse and Ingard
1968) is given by the following set of equations:

ρ

S
ut = −px

S
ρc2

pt = −ux x ∈ [0, L] (1)

Here, u(x, t) and p(x, t) are the volume velocity and
pressure, respectively, at position x, and at time
t, and subscripts t and x refer to time and space
differentiation, respectively. ρ and c are the density
and wave speed, respectively, S(x) is the tube cross-
sectional area (or rather, the area of an isophase
surface of the pressure distribution in the tube; see
Benade and Jansson 1974) at position x, and L is
the length of the tube (see Figure 1). This system is
often condensed into a single second-order system,
known as Webster’s equation (Fletcher and Rossing
1991):

S� tt = c2(S� x) x x ∈ [0, L] (2)

in terms of a velocity potential �(x, t), related to the
pressure p and volume velocity u by p = ρ� t and
u = −S� x. Such an equation is the starting point for
various speech-synthesis algorithms (Rabiner and
Schafer 1978), including the Kelly-Lochbaum model
(Kelly and Lochbaum 1962). This model results
from many simplifying assumptions, the most
important of which are linearity, relatively slow
variation in S(x) and the size of S(x) relative to audio
wavelengths, and losslessness. For more comments
on these assumptions (some more justifiable than
others), see the conclusion of this article.

It is useful to dimensionally reduce the problem,
by introducing the variables x′ = x/L, � ′ = �/cL,
as well as a dimensionless area function S′ = S/S0,

Figure 2. Pressure and flow
variables in a reed
instrument mouthpiece.

where S0 is a reference surface area, such as S0 =
S(x = 0). This leads, after substitution into Equation
1 and removal of primes, to

S� tt = γ 2(S� x) x x ∈ [0, 1] (3)

where γ = c/L is a constant with dimensions of
frequency. Initial conditions for the system may be
set to zero, and proper boundary conditions (one
required at each end of the domain) follow from
the consideration of the reed excitation and bell
radiation, to be discussed shortly.

Reed Mechanism

A slightly non-standard model of reed vibration can
be given as follows (see Figure 2). For a one-mass
model, the reed displacement behaves according to

ÿ + 2σ0 ẏ + ω 2
0(y − H0) − ωα+1

1

Hα−1
0

(|[y]−|)α = − Sr p�

Mr

(4)
y(t) is here the displacement of the reed relative to
an equilibrium position y0, Sr an effective surface
area of the reed, Mr is the reed mass, ω0 the resonant
frequency, and σ0 a damping parameter. Dots
above variables signify total time differentiation.
The term involving the coefficient ω1 models the
collision of the reed with the mouthpiece. It acts as
a one-sided repelling force, modeled as a power-law
nonlinearity, of exponent α, and becomes active
when y < 0. Here, [y]− = (y − |y|)/2, and the reed
displacement y is permitted to be negative. This
term, inspired by collision models used in hammer-
string dynamics (Chaigne and Askenfelt 1994), is
the sole distinguishing feature of the model, which
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is otherwise identical to that which appears in
the literature (Kergomard, Guillemain, and Voinier
2005; Kergomard 1995; Tachibana and Takahashi
2000; Dalmont, Gilbert, and Ollivier 2003; and
Avanzini and van Walstijn 2004).

This oscillator is driven by the pressure difference
p�, given by

p� = pm − pin

where pm(t) is the mouth pressure, and pin(t) the
pressure at the entrance to the acoustic tube.
Through Bernoulli’s law, the pressure difference
may be related to the flow in the mouthpiece um by

um = w[y]+
√

2|p�|
ρ

sign(p�) (5)

where w is the width of the reed channel. The flow
is nonzero only when the reed is not in contact
with the mouthpiece, or when y > 0. As such, the
quantity [y]+ is given by [y]+ = (y + |y|)/2. Neglected
here is an inertia term (see, e.g., Fletcher and Rossing
1991). From a numerical standpoint, the square root
dependence of flow on velocity could be generalized
to a power law (Backus 1963) with few resulting
complications in the discretization procedure to be
outlined subsequently.

The flow variables are related by a conservation
law

uin = um − ur

where uin is the flow entering the acoustic tube, and
where ur is related to reed displacement y by

ur = Sr ẏ

It is useful to introduce scaled variables as follows:

y′ = y
H0

− 1 p′
· = p ·

ρc2
u′

· = u ·
cS0

Here, p · and u· indicate any pressure or flow
variables, which, when inserted in the previous
equations (and primes subsequently removed) lead
to the system:

ÿ + 2σ0 ẏ + ω 2
0 y = −Qp� + ωα+1

1 (|[y + 1]−|)α (6a)

p� = pm − pin (6b)

um = R[y + 1]+√
|p�|sign(p�) (6c)

uin = um − ur (6d)

ur = S ẏ (6e)

where

Q = ρc2Sr

Mr H0
R =

√
2

wH0

S0
S = Sr H0

cS0
(7)

Note that higher-order effects of the time variation
of H0 (which is possible during play and is generally
quite slow) are neglected here, as in previous treat-
ments of the reed system (Kergomard, Guillemain,
and Voinier 2005). Slow variation in H0 can be
introduced here through a function H0(t); notice
that it affects all of the parameters Q, R and S.

It should be clear that in a connection with the
acoustic tube described by Equation 3, it must be
true that

� t(0, t) = γ pin(t) � x(0, t) = −uin(t) (8)

Bell Radiation

One boundary condition is required for Webster’s
equation (Equation 3) at the bell termination at
x = 1. Normally, in the musical acoustics literature
(e.g., Fletcher and Rossing 1991; Atig, Dalmont, and
Gilbert 2004), one employs the standard radiation
impedance result for an unflanged tube. Often, this
is given, in the low-frequency limit, in a polynomial
form obtained through a series approximation
(Fletcher and Rossing 1991; Atig, Dalmont, and
Gilbert 2004). Although this is fine for analysis
purposes, positive realness (Belevitch 1968)—and
thus passivity—is lost, and numerical instabilities
can arise in simulation. It is thus better, in this
context, to make use of a rational and positive
real approximation to the radiation impedance (see,
e.g., the form given in Rabiner and Schafer 1978),
leading to the following relationship between scaled
pressure and velocity at x = 1:

� x(1, t) = −α1� t(1, t) − α2�(1, t) (9)
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In the case of an unflanged tube, the constants α1

and α2 take on the values:

α1 = 1
4(0.6133)2γ

α2 = L

0.6133
√

S0S(1)/π
(10)

The term with coefficient α2 corresponds to
the reactive part of the radiation impedance, and
that with coefficient α1 to the resistive part. One
could go much further here, and develop boundary
conditions which model radiation to higher accuracy
(thus requiring more state), but the positive realness
criterion must continue to be enforced (i.e., a
higher order polynomial series approximation to
the radiation impedance will lead to the potential
for active behavior, and thus numerical instability
in simulation). Positive realness of an impedance
corresponds directly to bounded realness for the
associated reflectance, a quantity which is probably
better known to musical acousticians.

A Simple Finite-Difference Scheme

There are many possible choices of finite-difference
schemes for Webster’s equation, but, interestingly,
the simplest possible choice is, in almost all respects,
the best (see the section entitled “Dispersion,
Accuracy and Mode Tunings”). A grid function
� n

l for integer l, with 0 ≤ l ≤ N, and n ≥ 0, is an
approximation to �(x, t) at locations (x = lh, t = nk),
where h and k are the spacing between adjacent grid
points and time step, respectively (see Figure 3). k is
related to the sample rate f s by k = 1/ f s—in audio
synthesis applications, k is normally chosen a priori.
A simple scheme is of the following form:

� n+1
l = m(−)

l � n
l−1 + m(0)

l � n
l + m(+)

l � n
l+1 − � n−1

l (11)

where the Courant number λ is defined as λ = kγ /h,
and where the scheme coefficients are given by

m(−)
l = 2λ 2(Sl + Sl−1)

Sl−1 + 2Sl + Sl+1

m(0)
l = 2 − 2λ 2

m(+)
l = 2λ 2(Sl + Sl+1)

Sl−1 + 2Sl + Sl+1

Figure 3. Computational
grid for finite difference
scheme (Equation 11) for
Webster’s equation,
coupled to a reed
mechanism. At an interior

point, the computational
dependency of the scheme
at a given grid point is
indicated by the set of
black points with
accompanying arrows.

where Sl � S(lh), and where λ, the Courant number,
is given by λ = γ k/h. In implementation, the
coefficients may be precomputed, with minimal
effort (see Figure 3).

A necessary condition for numerical stability is

λ ≤ 1 (12)

This is the familiar Courant-Friedrichs-Lewy condi-
tion (Courant, Friedrichs, and Lewy 1928; Strikwerda
1989), arrived at through energy techniques (and not
frequency or von Neumann analysis, which is not
generally applicable to problems with spatial vari-
ation; see Bilbao 2009). Note that the condition is
independent of the variation in S itself, simplifying
implementation somewhat. In particular, for a given
time step k, it is easiest to choose the grid spacing h
so as to divide the unit interval into an integer num-
ber N of parts, and it is also important that Equation
12 be satisfied as near to equality as possibility. This
leads to the choice

N = floor(1/γ k) h = 1/N

Notice that one could choose a smaller value for N,
leading, apparently, to reduced computational costs
(i.e., fewer grid values must be computed). Such a
choice, though it has been made by some in the
context of speech synthesis (see, e.g., van den Doel
and Ascher 2008), leads to severe dispersion, and
bandlimiting of the output (see the next section for
more on this).

The updating of �, according to Equation 11,
necessarily requires a boundary condition at either
end; these settings will be discussed shortly.

The scheme in Equation 11 can be shown
to be equivalent to scattering forms commonly
encountered in physical modeling sound sysnthesis;
when λ = 1, it reduces to the Kelly-Lochbaum
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Figure 4. A tube profile,
and comparisons between
exact and numerical
modal frequencies
resulting from the use of
the scheme of Equation 11,

running at 44.1 kHz, and
for a value of λ chosen as
close to 1 as possible. At
top, a tube profile grossly
characteristic of a wind
instruments with a value

of γ = 600. A zero-velocity
(Neumann) condition is
used at the tube’s left end,
and a zero-pressure
(Dirichlet) condition at its
right end.

model, and if, furthermore, S is constant, it reduces
further to the digital waveguide (see Bilbao 2009 for
more details).

Dispersion, Accuracy and Mode Tunings

Before proceeding to the case of a complete wind
instrument, it is worth taking a look at the behavior
of the scheme in Equation 11 on its own, especially
with regard to the important issue of accuracy.
Equation 11 is formally second-order accurate; one
might assume, then, that numerical dispersion (and
thus misplacement of modal frequencies) will be a
major concern (Strikwerda 1989), as it can be for
simulations for other systems in musical acoustics
(such as, e.g., the transverse vibration of bars; Bilbao
2009). In fact, though, the formal order of accuracy
only refers to the behavior of the scheme in the
low-frequency limit; the accuracy of the scheme
is extremely good, over the whole range of audio
frequencies, even for relatively exotic choices of the
bore profile.

Consider, for example, the case of the tube
terminated by a zero-velocity condition at x = 0, and
a zero-pressure condition at x = 1 (corresponding,
roughtly, to a wind instrument configuration). One
finds, using Equation 11, that the modal frequencies
of the tube converge very rapidly to their exact
values, so that even at a typical audio sample
rate (such as 44.1 kHz), the error is far below the
threshold of human audio perception (see Figure 4
for some typical values).

In mainstream applications, better accuracy is
obtained by using more-involved differnce approxi-
mations. In the case of Webster’s equation, however,
higher-order accurate approximations will tend to
degrade accuracy. The explanation of this apparent
paradox is that the discretization errors in the tem-
poral and spatial second-order approximations in
Equation 11 lead to a rather delicate cancellation.
(For much more on this topic, see the literature on
so-called modified equation methods, e.g., Shubin
and Bell 1987.)

Some comments are in order in this point. First,
to obtain this very accurate behavior, the condition
in Equation 12 must be satisfied as close to equality
as possible.) This means choosing the number of grid
points N as large as possible. From the point of view
of computational complexity, one must thus be wary
of the temptation to choose a smaller N, to save
on the total operation count; if one does, numerical
dispersion, and, what is worse, a severe bandlimiting
of the resulting audio output will result (see, e.g.,
the results shown in van den Doel and Ascher 2008,
where even at an audio sample rate, the output is
bandlimited to far below the Nyquist). The issue of
truncation is a distinction between difference meth-
ods and scattering methods such as waveguides:
waveguides under truncation exhibit a slight detun-
ing of modal frequencies, which can be corrected
with recourse to fractional delay filters (Välimäki
and Karjalainen 1995); difference schemes do not
exhibit this detuning, but rather a loss of bandwidth,
which is typically very small if the stability con-
dition is satisfied near equality (at 44.1 kHz, in a
worst-case scenario for wind instruments, output is
bandlimited to approximately 20 kHz).

Scheme for the Reed System

For the reed system given in Equation 6, consider
the following scheme:

1
k2

(yn+1 − 2yn + yn−1) + σ0

k
(yn+1 − yn−1)

+ ω 2
0

2
(yn+1 + yn−1) (13a)

+ ωα+1
1

2
|[yn + 1]−|α−1(yn+1 + yn−1) = −Qpn

�
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pn
� = pn

m − pn
in (13b)

un
m = R[yn + 1]+√|pn

�|sign(pn
�) (13c)

un
in = un

m − un
r (13d)

un
r = S

2k
(yn+1 − yn−1) (13e)

Here, the functions y, um, ur, uin, pm, pin, and p�

have been approximated by time series, with time
step k. pm, in particular, is assumed to be a known
input control signal, and pin and uin will be related
to values of the grid function � over the problem
interior. Worth noting here is the approximation
to the stiffness term (with coefficient ω 2

0) and the
collision term (with coefficient ωα+1

1 ), both of which
make use of semi-implicit discretizations. Such
implicit approximations, when applied to lumped
systems such as the reed, significantly ease stability
requirements, and, as long as the unknown value of
the grid function appears linearly (as it does here)
still allow for fully explicit updating (see the section
entitled “Explicit Updating”).

Numerical Coupling to the Reed System

To couple the scheme in Equation 11 to that of
Equation 13 for the reed, numerical boundary
conditions corresponding to the conditions in
Equation 8 are necessary; here are particularly
well-behaved choices:

pn
in = 1

2γ k

(
� n+1

0 − � n−1
0

)
un

in = − 1
2h

(
� n

1 − � n
−1

)
(14)

The second condition refers to a value of the grid
function � l at a virtual location l = −1.

After some algebra, the system in Equation 13
can be reduced to

�pn + an
1

√
|�pn|sign(�pn) + an

2 = an
3un

in (15)

where the coefficients an
1 ≥ 0, an

2 and an
3 ≥ 0 will

depend on known (previously computed) values of
yn and the various defining parameters of the reed
system. (The non-negativity of an

1 and an
3, follows

from the use of semi-implicit discretizations to the
stiffness terms.)

Using the conditions in Equation 14 and the
update of Equation 11, as well as Equation 13b, one
can arrive at the relation

pn
� = bn

1 − bn
2un

in (16)

where again, bn
1 and bn

2 ≥ 0 depend on previously
computed values of the grid functions p and u, as
well as the input pressure pm. Now, Equations 15
and 16 can be combined into a single equation for
the pressure difference pn

�:

|pn
�| + cn

1

√|pn
�| + cn

2

sign (pn
�)

= 0 (17)

for the coefficents cn
1 ≥ 0 and cn

2. One can then
observe that, for a solution to exist, one must have
sign(pn

�) = −sign(cn
2), at which point the magnitude

|pn
�| can be determined uniquely. In this case, owing

to the form of the pressure-flow characteristic,
this can be done using the quadratic formula, but a
unique solution will exist for any such characteristic
that is one-to-one, though an iterative method
(necessarily convergent) may be necessary. In this
sense, finite difference updating is simpler here
than in the closely related case of the bow-string
interaction (in which case the nonlinear force-
velocity characteristic is not necessarily one-to-one;
Bilbao 2009).

Numerical Radiation Condition

For the scheme at the radiating termination, a
discrete condition corresponding to Equation 9 is

1
2h

(
� n

N+1 − � n
N−1

) = −α1

2k

(
� n+1

N − � n−1
N

)
− α2

2

(
� n+1

N + � n−1
N

)
When this condition is employed in the scheme of
Equation 11, the following specialized recursion at
the boundary point at l = N results:

� n+1
N = m(−)

N � n
N−1 + m(0)

N � n
N + qN� n−1

N (18)
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where

m(−)
N = λ 2

2τ
(SN+1 + 2SN + SN−1)

m(0)
N = 1

τ

(
2 − λ 2

2
(SN+1 + 2SN + SN−1)

)

qN = 1
τ

(
γ 2k2

2h
(SN+1 + SN)

(α1

k
− α2

)
− 1

)

and where

τ = γ 2k2

2h
(SN+1 + SN)

(α1

k
+ α2

)
+ 1

Explicit Updating

It is important to point out that, despite the
apparently complex relationship among the stored
variables at the terminations and the grid function
to be updated over the interior, a purely explicit
update form can be arrived at, but the order in which
operations are performed is of great importance.
Consider the entire scheme at the end of an update
cycle, at which point all values at time step n or
previously are known. One can then proceed as
follows. First, calculate pn

� through the solution of
Equation 17. Next, calculate yn+1 through Equation
13a, and calculate pn

in using Equation 13b and the
known value of pn

m. Then, calculate δ t·� n
0 , and thus

� n+1
0 using the first of the boundary conditions of

Equation 14. Finally, calculate the remaining values
of � n+1

l , l > 0 using the schemes in Equations 11
and 18.

At this point, the updating cycle is complete,
and the procedure can be repeated. Proponents of
wave digital filtering often call attention to this
computability issue, usually dealt with using so-
called reflection-free ports (Fettweis 1986). One
can see here that the same property is available
using finite difference schemes, and furthermore,
numerical solution uniqueness may be ensured
(in contrast with wave digital methods making
use of nonlinear elements, and power-normalized
waves (Bilbao 2004), where implicit solvers will be
necessary) (see Figure 5).

Numerical Stability

The question of numerical stability of the simulation
as a whole is a very delicate one. One can prove,
using energy techniques (Bilbao 2009), that in the
absence of the reed model, the scheme of Equation
11, coupled with the numerical radiation boundary
condition in Equation 14, is numerically stable, as
long as the condition of Equation 12 is satisfied.

When the reed model is introduced, however, the
situation becomes much more complicated—though
for many types of nonlinear systems, including
schemes for bow-string interactions, and for nonlin-
ear vibrations of strings and plates, one can develop
solid stability conditions, the reed system presents
some difficulties. The problem is the following: As
a starting point, one would like to be able to bound
some measure of the size of the state of the continu-
ous model system (i.e., the reed coupled to the bore)
in terms of the input signal pm(t). This is a natural
requirement, and one which, in this case, is not met;
it is difficult to show that there do not exist bounded
input signals which are capable of producing un-
bounded output. This indicates the possibility that
model of reed vibration presented here might not be
fully correct, from an energetic standpoint. As such,
it may not be possible to find a stability condition for
the derived numerical scheme. On the other hand, it
is rather difficult to actually exhibit any instability
in the scheme proposed here; the author has tried,
using the most perverse settings imaginable for the
system parameters and input signal!

Computational Considerations

The computational cost of this algorithm is almost
entirely due to the updating of the scheme for the
tube, and, as such, is governed by the choice of
time step k and grid spacing h, which are related
by the CFL condition (Equation 12). The condition
should be fulfilled as close to equality as possible—
otherwise, as mentioned previously, excessive
numerical dispersion, leading to mode mistuning
and a severe limitation in audio bandwidth (Bilbao
2009) will result. Thus, for a given time step k = 1/ f s,
the memory requirement will be almost exactly
2 f s/γ = 2 f sL/c units. Updating at a single grid
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point requires three arithmetic operations, and thus
the total operation count will be 6 f 2

s /γ = 6Lf 2
s /c

operations/second. For typical wind instruments,
and at a suitably high audio sample rate, such as
f s = 44100 Hz, the operation count will be on the
order of tens of megaoperations/second, well within
real time capability on a modest laptop computer.
For example, on the author’s laptop, a Dell with a
2.0 GHz Pentium processor, and for the case of a
clarinet geometry, it takes approximately 3.9 sec
to generate 5 sec of sound output, at 44.1 kHz, in
Matlab—and sluggish Matlab code generally runs
between 10 and 100 times slower than a standard
C implementation. On the other hand, a finite-
difference (FD) implementation is more expensive,
in terms of arithmetic (though not memory), than a
typical waveguide algorithm.

Tonehole Modeling

In the literature, the tonehole is usually modeled
as a branched side-tube, characterized as a two- or
three-port lumped circuit element. The reader is
referred to the ample literature on this subject (e.g.,
Keefe 1982a, 1982b). Normally, such an element is
described in terms of series and shunt impedances,
which depend on the hole radius and effective
tonehole height (which depends on the state of the
hole), and the enclosed volume.

It is, of course, possible to describe the behaviour
of such an element directly in the time-space
domain, by adding extra terms to Webster’s
equation. Here is one very simple variety, written
in terms of dimensionless variables, which is
equivalent to the lossless form given in van Walstijn
and Scavone (2000):

S� tt = γ 2 (S� x) x − δ(x − xT)g (19a)

g = φγ 2ST

ξ e
�(xT) + (1 − φ)ξ ST� tt(xT) (19b)

Here, ξ is the dimensionless ratio of the tonehole
height to the tube physical tube length L, and ST

is the dimensionless ratio of the tonehole cross-
sectional area to the area of the bore at its left end
(not at the hole!). φ is a parameter which indicates
the state of tonehole, ranging between φ = 0 (closed)

and φ = 1 (open). The various forms for ξ , which
depend on whether the hole is opened or closed, are
effective lengths, and exact expressions appear in
various publications (Keefe 1982a, 1990; van Wal-
stijn and Scavone 2000). In fact, the effective lengths
themselves are frequency-dependent to a slight de-
gree. Such frequency dependence, as well as loss due
to radiation (Ducasse 2003) is ignored here, for the
sake of simplicity (but can easily be reintroduced;
Bilbao 2009). The lumped variable g = g(t) is a vari-
able used to store the additional state of the tonehole.

This model is simplified from the usual form
seen in the literature (Keefe 1982a), which, when
viewed as a two-port lumped circuit element,
contains negative impedances (leading to the so-
called negative length correction). Such negative
elements can indeed be incorporated into the
framework above (Bilbao 2009), but at the risk of
introducing numerically unstable behaviour, which
is not surprising, given that such elements cannot
be interpreted as passive.

In an FD implementation, the coupling with the
tone-hole model can carried out using some form
of interpolation (i.e., the tonehole location will not,
in general, fall directly at one of the grid locations).
Here is a general form:

� n+1
l = m(−)

l � n
l−1 + m(0)

l � n
l + m(+)

l � n
l+1 − � n−1

l

− 4k2

Sl−1 + 2Sl + Sl+1
J l(xT)g n

g n = φγ 2ST

2ξ e
(� n+1(xT) + � n−1(xT))

+ (1 − φ)ξ ST

k2
(� n+1(xT) − 2� n(xT) + � n−1(xT))

Here, � n(xT) is an interpolated value drawn from
the grid function � n

l ; if linear interpolation is
used, for example, � n(xT) = α� n

lT
+ (1 − α)� n

lT+1,
where the interpolation point xT lies between
the grid locations l = lT and l = lT + 1, and where
0 ≤ α < 1 is an interpolation index. Similarly,
the grid function J l(xT) is an approximation to
a delta function centered at xT, and when linear
interpolation is used, takes on the values J lT = α/h,
J lT+1 = (1 − α)/h, and is zero otherwise.
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Figure 5. Typical output
spectra for various bore
types: (a) a cylinder, (b) a
cylinder with a
clarinet-like bell, and (c) a
cylinder with a bell of
extreme flare. In each case,
the other model

parameters correspond,
roughly, to those of a
clarinet: γ = 512, Q = 1.6
× 1010 , R = 0.032, S =
10−6 , ω0 = 23250, g =
3000. The scheme of
Equation 11 is used, at a
sample rate of 44.1 kHz.

Figure 5

Obviously, the interpolation and delta-function
approximation could be extended to a higher order,
but linear approximation is probably sufficient.
Interestingly, if the interpolation and delta-function
approximation are of the same order, one can prove
numerical stability of the combined tube/tonehole
system, under static conditions (Bilbao 2009).
Though this scheme apparently is implicit, it is pos-
sible to arrive at an explicit update, much in the same
way as for the radiation termination (Bilbao 2009).

Simulation Results

This FD model successfully replicates many fea-
tures of acoustic reed wind instruments (and
also of other synthesis methods), and a variety
of such features are presented here. Sound examples
are available at the author’s Web site, at http://
ccrma.stanford.edu/˜ bilbao/soundex/reed.

Bore Profiles

It is particularly simple, in the direct FD framework,
to alter the bore profile: The function S(x) can be set
arbitrarily, and, once set, values of the function are
used, without further calculations (as of scattering
coefficients or impedances) in the simulation. It
is thus straightforward to experiment with bore

Figure 6. Non-dimensional
reed displacement y, for a
clarinetlike configuration,
of parameters as given in
the caption to Figure 5,
and with a bore profile as
shown in Figure 5b. The
parameters for the

collision term in Equation
4 are chosen as ω 1 = 632,
and the nonlinearity
exponent is α = 4. In (a),
the input is a steady
nondimensional mouth
pressure of pm = 0.013,
and in (b), pm = 0.02.

Figure 6

profiles that differ substantially from, for example,
those that lead to efficient waveguide realizations
(see Figure 5). One must beware, however, that
for extreme variations in the cross-sectional area,
Webster’s equation itself fails to be a good model
of the tube dynamics. In particular, computational
effort is independent of the choice of bore profile.

Reed Beating

As an example of typical phenomena generated by
such a model, consider the perceptually important
reed-beating effect, as illustrated in Figure 6. In
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Figure 7. Non-dimensional
output pressure, for the
wind model of parameters
given in the caption to
Figure 5, and using the
clarinet-like bore profile

shown in Figure 5b. Top,
with a nondimensional
mouth pressure of pm =
0.0134, center, with pm =
0.0148, and bottom, with
pm = 0.0168.

particular, note that the nondimensional reed dis-
placement takes on values < −1; the extent of such
“penetration” may be controlled through the choice
of ω1 and α, but the general results are in agreement
with other published results (see, e.g., Keefe
1992).

Onset Times

As another example, the variation in onset times
for notes as a function of mouth pressure, char-
acteristic of wind instruments, is shown in
Figure 7.

Time Variations in the Equilibrium Reed
Displacement

When the equilibrium reed displacement H0 is
allowed to vary slightly, and at sub-audio rates (as
in a typical wind instrument gesture), variations in
timbre result (see Figure 8).

Figure 8. Top: relative
variation in reed
equilibrium displacement
H(t)/H0. Middle: output
pressure waveform
(non-dimensional), and
bottom, its spectrogram.
The model is of parameters

as described in the caption
to Figure 5, and the input
waveform is a constant
with pm = 0.013. The
scheme of Equation 11 is
used, at a sample rate of
48 kHz.

Tonehole Openings

Like other physical modeling synthesis methods,
the FD tonehole model presented here allows for
changes in pitch, through time variation in the
parameter φ, which specifies a state between open
and closed (see Figure 9), which is generated using a
saxophone-like model, with a series of toneholes.

Squeaks and Multiphonics

A variety of multiphonics can be generated though
judicious placement of toneholes. If, for instance, a
single tonehole is opened a good distance away from
the bell, one is likely to generate a sound with a
multiphonic character, exhibiting, perhaps, distinct
sounding pitches, and a sub-audio rate time-varying
amplitude envelope (see Figure 10), illustrating such
a “warbling” effect. The space of such sounds, as
any wind player will know, is very large indeed, and
will depend on mouth pressure, the rate at which
the hole is opened or closed, in addition to the
particulars of tonehole placement and geometry.

Conclusion

Perhaps the greatest advantage of a fully discrete for-
mulation is fidelity to the physics of the continuous
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Figure 9. Spectrogram of
output pressure for a
gesture in an instrument of
conical bore. Five
toneholes are tuned
approximately to a minor
scale.

time/space model itself; as a result, many issues that
appear in more efficient designs, such as “lumping”
of impedances, fractional delay interpolation, etc.,
can be sidestepped. Another advantage is extensi-
bility; see subsequently for some examples. The
greatest disadvantage is computational cost, which
is, in fact, quite small by today’s standards, though
certainly higher than that of, say, a waveguide
model.

There are many ways in which the FD wind
model here could be extended. Several are in
progress and have not been discussed in this short
article. In particular, there is a simple extension to
“blown open” brass-like instruments that is nearly
trivial, involving only a single change in polarity of
the pressure difference �p in the model. Another
obvious step is the porting of such an algorithm to a
real-time environment such as Max/MSP (Zicarelli
2002) or Csound (Boulanger 2001). As noted earlier,
a real-time implementation is easily possible, and
such developments are under way.

Other extensions are also possible. The fully dis-
crete FD approach is very well suited to an extension
to nonlinear one-dimensional wave propagation; the
linearity hypothesis is probably sufficient for reed
instruments and brass instruments under moderate
amplitude excitation, though nonlinear effects do
appear at high amplitudes in instruments such as the
trombone (Hirschberg et al. 1996), and have indeed
been modeled in synthesis applications (Mmsallam
et al. 2000; Vergez and Rodet 2000). Fully discrete
methods in computing shock wave solutions have
a long history in mainstream fluid dynamics appli-
cations (e.g., Sod 1978; Hirsch 1988; Leveque 2002),
which is concerned with finite-volume methods
in the context of nonlinear fluid-dynamics applica-

Figure 10. Spectrogram of
output pressure, for the
wind model of parameters
given in the caption to
Figure 5, and using the
clarinet-like bore profile
shown in Figure 5b, with a

tonehole located at xT =
0.6, with parameters ST =
0.1644, ξ = 0.0075, and
ξ e = 0.0134. The tonehole
is opened, over a duration
of 10 msec, at time t = 1
sec.

tions. The introduction of loss in the acoustic tube,
however, is in some ways more problematic. Often,
loss in the boundary layer of a tube is modeled in
the frequency domain; when transformed back to
the time domain, one arrives at a partial differential
equation involving fractional derivatives, which can
cause immense difficulty numerically. However,
discrete models of loss have been examined in great
detail, in the scattering context, by various authors
(e.g., Hélie and Matignon 2006).

Finally, the model described here is generally
valid when bore radius is small compared to audio
wavelengths, and when its spatial variation is not
too great. In other cases, one might need to resort
to models of wave propagation incorporating higher
modes, and possibly mode conversion. In the fully
discrete case, one could employ a three-dimensional
model of the tube, with a coarse grid approximation
in the transverse direction (Noreland 2002), though
one must beware the effects of numerical dispersion,
which can be extreme in coordinate systems other
than Cartesian.
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