DESIGN, DEVELOPMENT AND DELIVERY OF

 ONE (1) BREADBOARD AND THREE (3) PRODUCTION UNITS OF A 75 VA INTEGRATED STATIC INVERTERMONTHLY REPORT NUMBER 15
JULY 1966
J. P. Verger
L. L. Glover
L. A. Hahn
P. F. Newcomb

209 wm on All רוכy

Contract Number NAS 8-11925 Control Number DCN 1-5-40-56195 (IF) \& SI (IF)

Prepared by

TEXAS INSTRUMENTS INCORPORATED Semiconductor-Components Division Post Office Box 5012 Dallas, Texas 75222

For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
George C. Marshall Space Flight Center Huntsville, Alabama 35812

CONTRACT NO. NAS 8-11925 CHIM: SAHEMULE-S/R Neman

SECTION II

TECHNICAL DISCUSSION
A. Progress Report for Month of July, 1966

1. Summary

The breadboard version of the inverter was delivered to Huntsville on July 16. A second breadboard with a layout similar to that of the final package has been built.

Several lots of new I/C array material are presently in process. These slices incorporate features designed to alleviate the epitaxial stress problems. Also, thicker oxide growths are being used on the emitters.

A modification is being introduced to the 16 pin package lid. (Gold-plated Kovar is to be used for lid material.) Also, stitch welding, rather than one-shot welding, of lid is to be used.

Because the system requires greater quantities of L-163's than L-164, the TI power device fabrication effort for the month was devoted to building L-163's. A sufficient number of both device types was available for completion of the breadboard.
2. Progress Report on Subsections
a. Inverter System

The breadboard was delivered to Huntsville on
July 16. It contained all final components except
for the Johnson counter which consisted of four (4) flat packs and twelve (12) resistors instead of the proposed single chip circuit.

A second breadboard has been built. Component placement and wiring are very similar to that of the final production models. Room temperature operation is satisfactory and temperature testing will be completed soon.

The two TXCO's shipped back to Bendix for rework because of failure to operate at high temperature have been received. Both worked satisfactorily over the temperature range of -25 to $+125^{\circ} \mathrm{C}$.

The potting of components for all production models has been completed.

All system housings have been completed except for anodization. The printed circuit board art work is almost finished.

Optimistically, the first production model inverter should be ready for electrical evaluation the first part of September.
b. I/C Flip-Flop Arrays

A total of 60 slices of new Johnson counter material is at various stages of the diffusion process. An additional 15 slices of the original material have completed diffusions and are presently being metallized. Also, 3 slices of ripple counter and 2 slices of decade counter material are also being metallized.

Approximately 50 of the new packages are

 scheduled to be received August 1. Further deliveries will follow later.c. Power Transistors

Thirty-seven L-163's were fabricated during the month. Electrical evaluation showed 26 of these units did not meet specs; the remaining eleven were sent to the QA department for mechanical testing. High thermal impedance, apparently caused by inadequate bonding between the wafer contact and the ceramic metallization, is the primary cause of the loss.

B. Current Problems and Corrective Action

Project running behind schedule, pending delivery of Johnson counter arrays. Corrective action discussed in Part A of the report.

C. Work to be Performed During Next Reporting Period

1. System
a. Complete evaluation of second breadboard.
b. Complete manufacturing of printed circuit board.
c. Complete manufacture of system housing.
d. Start packaging first production model.
2. I/C Flip-Flop Arrays
a. Obtain Johnson counter and ripple counter arrays which meet all specifications.
3. Power Transistors
a. A larger number of $L-163^{\prime}$ s should be built next month and work to improve the yield will continue.

Component
Designa-
tion

a
1
1
1
0
Q8
Q9
Q10
Q11-
Q13
W1

m

Flop Array

$$
\text { Table A-1 Parts List - } 75 \text { VA Integrated Static Inverter }
$$

\square TI

䦔

$$
\begin{aligned}
& \text { L-163, Dual Power NPN Darlington } \\
& \text { Transistor, } 6 \text { Pin Stud Package }
\end{aligned}
$$

TI
TI
 2N3038, Transistor in TO-50
TYpe Package
2N3044, Dual NPN Transistors in T0-89 Package L-164, Dual Power NPN-PNP

2N3838, Dual PNP-NPN Transistors in T0-89 Package

Manufac-	
turer	$\begin{array}{l}\text { Date of } \\ \text { Change }\end{array}$

TI
H

Description of Components Transistor, 6 Pin Stud Package we71
Requamdotened
me71
Tequamdorened
(Originally Issued March 1, 1966)
Parts List - 75 VA Integrated Static Inverter - Table A-1 (Continued)
Description of Components

Date of
Change

Developmental

$$
\begin{aligned}
& \text { Manufac- } \\
& \text { turer }
\end{aligned}
$$ Item

Developmental
Item; Weight
$\approx .71 \mathrm{oz}$.

$$
\begin{aligned}
& 4-1-66 \\
& 7-1-66 \\
& 7-1-66
\end{aligned}
$$

Component
Designa-
tion

C12, C16
m
-1
s7uәuno Selected from
1N753 family
Selected from
lN752 family

+
Parts List - 75 VA Integrated Static Inverter
Table A-1 (Continued)
$\begin{aligned} & \text { Date of } \\ & \text { Change }\end{aligned}$
4-1-66
4-1-66
$7-1-66$
5-1-66
$4-1-66$
\qquad TI
TI
TI
Spraque
H
H
TI
$\underset{H}{H}$
Bourns

\section*{| 0 |
| :--- |
| |
| |
| 0 |
| 0 |
| 0 |
| 0 |}

Parts List - 75 VA Integrated Static Inverter
Table A-1 (Continued)
Date of
Change

$\stackrel{H}{\mathrm{H}}$
TI
TI
TI

$\underset{H}{H}$
0
0
1
1
1
+
0
0
1
1
1
1
Component Designa-

$\stackrel{H}{H}$
TI
TI Designa-
tion LId TTE
R12
R12
R13
R14
R15, R20, $\underset{\sim}{\sim}$
R17
R18
$\stackrel{9}{9}$
$\begin{aligned} & \text { Date of } \\ & \text { Change }\end{aligned}$
5-1-66
$7-1-66$
$7-1-66$

Parts List - 75 VA Integrated Static Inverter
ๆ Table A-1 (Continued)

Date of
Change

4-1-66
$4-1-66$
BLOCK DIAGRAM - 75VA INTEGRATED STATIC INVERTER

Figure A-2. System Schematic - VA Integrated Static Inverter, Revision No. 4, Dated July 1, 1966

