75 research outputs found

    Benomyl Effects on Plant Productivity through Arbuscular Mycorrhiza Restriction in a Greek Upland Grassland

    Get PDF
    Interactions between plants and microbes are important for plant community structure. Many plants establish symbioses with arbuscular mycorrhizal (AM) fungi, which play a central role in soil fertility, plant nutrition and the maintenance of stability and biodiversity within plant communities by improving uptake of nutrients and water. AM fungi can improve growth/performance in a variety of plant species by influencing intra- and interspecific competition of neighbouring plants and thus regulate coexistence and diversity in mixed communities. The aim was to study AMF effects on plant productivity and diversity in Greek upland grasslands

    Soil microbes and community coalescence

    Get PDF
    Community coalescence is a recently introduced term describing the interaction of entire communities and their environments. We here explicitly place the concept of community coalescence in a soil microbial context, exploring intrinsic and extrinsic drivers of such coalescence events. Examples of intrinsic events include the action of earthworms and the dynamics of soil aggregates, while extrinsic events are exemplified by tillage, flooding, litterfall, outplanting, and the addition of materials containing microbial communities. Aspects of global change may alter the frequency or severity of coalescence events. We highlight functional consequences of community coalescence in soil, and suggest ways to experimentally tackle this phenomenon. Soil ecology as a whole stands to benefit from conceptualizing soil biodiversity in terms of dynamic coalescent microbial assemblages

    Ozone affects plant, insect, and soil microbial communities. A threat to terrestrial ecosystems and biodiversity

    Get PDF
    Elevated tropospheric ozone concentrations induce adverse effects in plants. We reviewed how ozone affects (i) the composition and diversity of plant communities by affecting key physiological traits; (ii) foliar chemistry and the emission of volatiles, thereby affecting plant-plant competition, plant-insect interactions, and the composition of insect communities; and (iii) plant-soil-microbe interactions and the composition of soil communities by disrupting plant litterfall and altering root exudation, soil enzymatic activities, decomposition, and nutrient cycling. The community composition of soil microbes is consequently changed, and alpha diversity is often reduced. The effects depend on the environment and vary across space and time. We suggest that Atlantic islands in the Northern Hemisphere, the Mediterranean Basin, equatorial Africa, Ethiopia, the Indian coastline, the Himalayan region, southern Asia, and Japan have high endemic richness at high ozone risk by 2100

    Local stability properties of complex, species‐rich soil food webs with functional block structure

    Get PDF
    Ecologists have long debated the properties that confer stability to complex, species-rich ecological networks. Species-level soil food webs are large and structured networks of central importance to ecosystem functioning. Here, we conducted an analysis of the stability properties of an up-to-date set of theoretical soil food web models that account both for realistic levels of species richness and the most recent views on the topological structure (who is connected to whom) of these food webs. The stability of the network was best explained by two factors: strong correlations between interaction strengths and the blocked, nonrandom trophic structure of the web. These two factors could stabilize our model food webs even at the high levels of species richness that are typically found in soil, and that would make random systems very unstable. Also, the stability of our soil food webs is well-approximated by the cascade model. This result suggests that stability could emerge from the hierarchical structure of the functional organization of the web. Our study shows that under the assumption of equilibrium and small perturbations, theoretical soil food webs possess a topological structure that allows them to be complex yet more locally stable than their random counterpart. In particular, results strongly support the general hypothesis that the stability of rich and complex soil food webs is mostly driven by correlations in interaction strength and the organization of the soil food web into functional groups. The implication is that in real-world food web, any force disrupting the functional structure and distribution pattern of interaction strengths (i.e., energy fluxes) of the soil food webs will destabilize the dynamics of the system, leading to species extinction and major changes in the relative abundances of species.Theoretical Physic

    Chapitre 14: Phytopathogènes et stratégies de contrôle en aquaponie

    Full text link
    peer reviewedAmong the diversity of plant diseases occurring in aquaponics, soil-borne pathogens, such as Fusarium spp., Phytophthora spp. and Pythium spp., are the most problematic due to their preference for humid/aquatic environment conditions. Phytophthora spp. and Pythium spp. which belong to the Oomycetes pseudo-fungi require special attention because of their mobile form of dispersion, the so-called zoospores that can move freely and actively in liquid water. In coupled aquaponics, curative methods are still limited because of the possible toxicity of pesticides and chemical agents for fish and beneficial bacteria (e.g. nitrifying bacteria of the biofilter). Furthermore, the development of biocontrol agents for aquaponic use is still at its beginning. Consequently, ways to control the initial infection and the progression of a disease are mainly based on preventive actions and water physical treatments. However, suppressive action (suppression) could happen in aquaponic environment considering recent papers and the suppressive activity already highlighted in hydroponics. In addition, aquaponic water contains organic matter that could promote establishment and growth of heterotrophic bacteria in the system or even improve plant growth and viability directly. With regards to organic hydroponics (i.e. use of organic fertilisation and organic plant media), these bacteria could act as antagonist agents or as plant defence elicitors to protect plants from diseases. In the future, research on the disease suppressive ability of the aquaponic biotope must be increased, as well as isolation, characterisation and formulation of microbial plant pathogen antagonists. Finally, a good knowledge in the rapid identification of pathogens, combined with control methods and diseases monitoring, as recommended in integrated plant pest management, is the key to an efficient control of plant diseases in aquaponics.Cos

    Towards an integrative, eco-evolutionary understanding of ecological novelty: studying and communicating interlinked effects of global change

    Get PDF
    Global change has complex eco-evolutionary consequences for organisms and ecosystems, but related concepts (e.g., novel ecosystems) do not cover their full range. Here we propose an umbrella concept of “ecological novelty” comprising (1) a site-specific and (2) an organism-centered, eco-evolutionary perspective. Under this umbrella, complementary options for studying and communicating effects of global change on organisms, ecosystems, and landscapes can be included in a toolbox. This allows researchers to address ecological novelty from different perspectives, e.g., by defining it based on (a) categorical or continuous measures, (b) reference conditions related to sites or organisms, and (c) types of human activities. We suggest striving for a descriptive, non-normative usage of the term “ecological novelty” in science. Normative evaluations and decisions about conservation policies or management are important, but require additional societal processes and engagement with multiple stakeholders

    Fertilization Affects Severity of Disease Caused by Fungal Plant Pathogens

    No full text
    Commercial fertilizers are commonly applied in farming to maximize crop yield. Lifting nutrient limitation to plant growth when water and light conditions are sufficient may permit plants to grow to the maximum of their ability; however, plant ability to resist pathogen infections is also modified. A meta-analysis was conducted on 57 articles to identify the way plant disease severity of fungal pathogen-induced infection is modified following fertilization, and the key regulators of such an effect. The analysis largely focused on N fertilization events in order to minimize the effect of heterogeneity that could result from differences in the way different nutrient fertilizers are able to modify plant disease severity. Fungal pathogen identity and fungal pathogen lifestyle were the main significant regulators affecting the extent of the modification of plant disease resistance following N fertilization, whereas contradictory results were obtained with the susceptibility of plant species. No differences were detected between pot or field experiments and following artificial or natural infection. Although in the vast majority of instances N fertilization increased disease severity, characteristic plant species and fungal pathogens could be identified for which disease severity following N fertilization declined. It is concluded that the potential of some plant species such as Solanum spp. to show reduced disease severity following N fertilization requires further investigation, as in such cases N fertilization could potentially be used as an additional means of suppressing fungal pathogens
    corecore