2,154 research outputs found

    Verification of a New Method in Determining the Visocity of Fluids Under High Temperature and Pressure

    Get PDF
    At convergent plate boundaries, where plate subduction occurs, volcanism is witnessed above the subducting plate. Hydrous minerals carried to depths of 100 km break down and release their stored water into overlying rock. As this water migrates toward the surface, mantle rock melts and also rises to the surface. This magma is seen as volcanic arcs on the surface. Viscosity measurements are important in the investigation of fluid transport. Previous measurements of water viscosity have been constrained to surface or near surface conditions. The dehydration reactions occur under much higher temperatures and pressures than those found on the surface. Prior to determining viscosity at these high pressures and temperatures (approximately 1300 K and 5 GPa), the method must be validated on fluids having well known viscosities. This is done by calculating the viscosity of water under conditions in which it is already well known (1 atm and 25º C). The hydrothermal diamond cell will be used in the high pressure and temperature experiments. The geometry of the hydrothermal diamond cell must also be reproduced when the method is tested. This geometry can be simply reproduced. Two glass slides were clamped together with a rhenium gasket between the slides. The gasket will be the same type as the one used in the hydrothermal diamond cell. Water with suspended particles was contained within a central gap within. Particle motion was monitored for preferential motion, in order to confirm accurate results. Particles in water exhibit random motions, called Brownian motion. These motions are completely random and by recording their motion, the viscosity of the water can be determined. Care must be taken when choosing the particles to track. Particles in close proximity to each other or to the surface of the gasket do not move randomly due to interactions. Digital recordings are then made of the 3 mm suspended particles. Using mean square displacement, the viscosity can then be calculated from the data

    Agent Based Approaches to Engineering Autonomous Space Software

    Full text link
    Current approaches to the engineering of space software such as satellite control systems are based around the development of feedback controllers using packages such as MatLab's Simulink toolbox. These provide powerful tools for engineering real time systems that adapt to changes in the environment but are limited when the controller itself needs to be adapted. We are investigating ways in which ideas from temporal logics and agent programming can be integrated with the use of such control systems to provide a more powerful layer of autonomous decision making. This paper will discuss our initial approaches to the engineering of such systems.Comment: 3 pages, 1 Figure, Formal Methods in Aerospac

    AMO-Forced Regional Processes Affecting Summertime Precipitation Variations in the Central United States

    Get PDF
    Numerous previous studies have provided insight into the influence of the Atlantic multidecadal oscillation (AMO) on North American precipitation. However, these studies focused on large-scale processes, and additional studies are needed to gain understanding of local and regional processes that develop in different phases of the AMO and substantiate its influences on precipitation. In this study, the Weather Research and Forecasting (WRF) regional model is used to examine AMO-forced local and regional processes and how they have affected summertime precipitation variation in the central United States. While moisture transport and convergence by the Great Plains low-level jet have been recognized as necessary conditions for summer precipitation, model simulations show similar low-level moisture flux convergence in the central United States between the cold and warm phases of the AMO. However, there was a strong moistening in the lower troposphere during the AMO cold phase, making the atmosphere more unstable for convection and precipitation. The source of the moisture was found to be a strong positive surface evaporation–precipitation feedback initiated and sustained by increased relative vorticity along a frontal zone. Along the frontal zone, isentropic stretching of the upper-level atmosphere and cyclonic circulation anomalies increased the relative vorticity during theAMOcold phase, providing the dynamic support needed to release the low-level moist instability and produce the increased precipitation. These results indicate that the dynamics of the circulation in the AMO cold phase played key roles to organize regional vorticity processes that further sustained a coupling of precipitation and the surface evaporation and perpetuated the precipitation

    AMO-Forced Regional Processes Affecting Summertime Precipitation Variations in the Central United States

    Get PDF
    Numerous previous studies have provided insight into the influence of the Atlantic multidecadal oscillation (AMO) on North American precipitation. However, these studies focused on large-scale processes, and additional studies are needed to gain understanding of local and regional processes that develop in different phases of the AMO and substantiate its influences on precipitation. In this study, the Weather Research and Forecasting (WRF) regional model is used to examine AMO-forced local and regional processes and how they have affected summertime precipitation variation in the central United States. While moisture transport and convergence by the Great Plains low-level jet have been recognized as necessary conditions for summer precipitation, model simulations show similar low-level moisture flux convergence in the central United States between the cold and warm phases of the AMO. However, there was a strong moistening in the lower troposphere during the AMO cold phase, making the atmosphere more unstable for convection and precipitation. The source of the moisture was found to be a strong positive surface evaporation–precipitation feedback initiated and sustained by increased relative vorticity along a frontal zone. Along the frontal zone, isentropic stretching of the upper-level atmosphere and cyclonic circulation anomalies increased the relative vorticity during theAMOcold phase, providing the dynamic support needed to release the low-level moist instability and produce the increased precipitation. These results indicate that the dynamics of the circulation in the AMO cold phase played key roles to organize regional vorticity processes that further sustained a coupling of precipitation and the surface evaporation and perpetuated the precipitation

    Constraining Holocene hydrological changes in the Carpathian–Balkan region using speleothem δ18O and pollen-based temperature reconstructions

    Get PDF
    Here we present a speleothem isotope record (POM2) from Ascunsă Cave (Romania) that provides new data on past climate changes in the Carpathian–Balkan region from 8.2 ka until the present. This paper describes an approach to constrain the effect of temperature changes on calcite δ18O values in stalagmite POM2 over the course of the middle Holocene (6–4 ka), and across the 8.2 and 3.2 ka rapid climate change events. Independent pollen temperature reconstructions are used to this purpose. The approach combines the temperature-dependent isotope fractionation of rain water during condensation and fractionation resulting from calcite precipitation at the given cave temperature. The only prior assumptions are that pollen-derived average annual temperature reflects average cave temperature, and that pollen-derived coldest and warmest month temperatures reflect the range of condensation temperatures of rain above the cave site. This approach constrains a range of values between which speleothem δ18O changes should be found if controlled only by surface temperature variations at the cave site. Deviations of the change in δ18Ocspel values from the calculated temperature-constrained range of change are interpreted towards large-scale variability of climate–hydrology. Following this approach, we show that an additional ∼0.6‰ enrichment of δ18Oc in the POM2 stalagmite was caused by changing hydrological patterns in SW Romania across the middle Holocene, most likely comprising local evaporation from the soil and an increase in Mediterranean moisture δ18O. Further, by extending the calculations to other speleothem records from around the entire Mediterranean basin, it appears that all eastern Mediterranean speleothems recorded a similar isotopic enrichment due to changing hydrology, whereas all changes recorded in speleothems from the western Mediterranean are fully explained by temperature variation alone. This highlights a different hydrological evolution between the two sides of the Mediterranean. Our results also demonstrate that during the 8.2 ka event, POM2 stable isotope data essentially fit the temperature-constrained isotopic variability. In the case of the 3.2 ka event, an additional climate-related hydrological factor is more evident. This implies a different rainfall pattern in the Southern Carpathian region during this event at the end of the Bronze Age

    RL10A-3-3A Rocket Engine Modeling Project

    Get PDF
    Two RL10A-3-3A rocket engines comprise the main propulsion system for the Centaur upper stage vehicle. Centaur is used with bod Titan and Atlas launch vehicles, carrying military and civilian payloads from high altitudes into orbit and beyond. The RL10 has delivered highly reliable service for the past 30 years. Recently, however, there have been two in-flight failures which have refocused attention on the RL10. This heightened interest has sparked a desire for an independent RL10 modeling capability within NASA and th Air Force. Pratt & Whitney, which presently has the most detailed model of the RL10, also sees merit in having an independent model which could be used as a cross-check with their own simulations. The Space Propulsion Technology Division (SPTD) at the NASA Lewis Research Center has developed a computer model of the RL10A-3-3A. A project team was formed, consisting of experts in the areas of turbomachinery, combustion, and heat transfer. The overall goal of the project was to provide a model of the entire RL10 rocket engine for government use. In the course of the project, the major engine components have been modeled using a combination of simple correlations and detailed component analysis tools (computer codes). The results of these component analyses were verified with data provided by Pratt & Whitney. Select modeling results and test data curves were then integrated to form the RL10 engine system model The purpose of this report is to introduce the reader to the RL10 rocket engine and to describe the engine system model. The RL10 engine and its application to U.S. launch vehicles are described first, followed by a summary of the SPTD project organization, goals, and accomplishments. Simulated output from the system model are shown in comparison with test and flight data for start transient, steady state, and shut-down transient operations. Detailed descriptions of all component analyses, including those not selected for integration with the system model, are included as appendices

    Understanding the Location Decisions of the Cuyahoga Metropolitan Housing Authority\u27s Housing Choice Voucher Holders: Pilot Study

    Get PDF
    The goal of the Housing Choice Voucher Program is to assist low-income families in renting decent, safe, and affordable housing. Voucher holders are free to select a unit and location that best meets their needs within the guidelines of the program. The Cuyahoga Metropolitan Housing Authority (CMHA), which administers the program in Cuyahoga County, was interested in learning more about how housing choice voucher holders decide where they want to live. CMHA was also interested in understanding the barriers that might be preventing voucher holders from moving to areas of greater opportunity and how it could partner with cities to design programs that move voucher holders up and out of poverty. CMHA contracted with the Levin College of Urban Affairs at Cleveland State University to undertake a pilot study to investigate these questions

    Reverse Shock Emission Revealed in Early Photometry in the Candidate Short GRB 180418A

    Get PDF
    We present observations of the possible short GRB 180418A in γ\gamma-rays, X-rays, and in the optical. Early optical photometry with the TAROT and RATIR instruments show a bright peak (\approx 14.2 AB mag) between T+28T+28 and T+90T+90 seconds that we interpret as the signature of a reversal shock. Later observations can be modeled by a standard forward shock model and show no evidence of jet break, allowing us to constrain the jet collimation to θj>7\theta_j> 7^\circ. Using deep late-time optical observations we place an upper limit of r>24r>24 AB mag on any underlying host galaxy. The detection of the afterglow in the \textit{Swift} UV filters constrains the GRB redshift to z<1.3z<1.3 and places an upper bound on the γ\gamma-ray isotropic equivalent energy Eγ,iso<3×1051E_{\rm{\gamma,iso}} < 3 \times 10^{51} erg. The properties of this GRB (e.g. duration, hardness ratio, energetic, and environment) lie at the intersection between short and long bursts, and we can not conclusively identify its type. We estimate that the probability that it is drawn from the population of short GRBs is 10\%-30\%.Comment: Accepted por publication in Ap

    An Observed Correlation Between Thermal and Non-Thermal Emission in Gamma-Ray Bursts

    Full text link
    Recent observations by the FermiFermi Gamma-ray Space Telescope have confirmed the existence of thermal and non-thermal components in the prompt photon spectra of some Gamma-ray bursts (GRBs). Through an analysis of six bright Fermi GRBs, we have discovered a correlation between the observed photospheric and non-thermal γ\gamma-ray emission components of several GRBs using a physical model that has previously been shown to be a good fit to the Fermi data. From the spectral parameters of these fits we find that the characteristic energies, EpE_{\rm p} and kTkT, of these two components are correlated via the relation EpTαE_{\rm p} \propto T^{\alpha} which varies from GRB to GRB. We present an interpretation in which the value of index α\alpha indicates whether the jet is dominated by kinetic or magnetic energy. To date, this jet composition parameter has been assumed in the modeling of GRB outflows rather than derived from the data
    corecore