18 research outputs found

    SNAT7 is the primary lysosomal glutamine exporter required for extracellular protein-dependent growth of cancer cells

    Get PDF
    Significance Lysosomes are degradative intracellular organelles essential to cell maintenance and homeostasis. Although their degradative function is well documented, the proteins responsible for the efflux, and reuse, of lysosomal degradation products remain largely unknown. In this study, we identify the transporter responsible for lysosomal efflux of glutamine, an amino acid central to several key metabolic pathways. This central role of glutamine is exploited by several types of cancer cells with increased consumption of glutamine. Interestingly, genetic inactivation of the transporter impairs their growth under conditions of limited glutamine availability when internalized extracellular proteins are used as an alternative source of amino acids, suggesting novel approaches for anticancer therapies.</jats:p

    Caractérisation fonctionnelle des transporteurs lysosomaux orphelins

    No full text
    Within lysosomes, about sixty different hydrolases degrade macromolecules. This degradation is dependent on the acidity of the lysosomal lumen, which pH ranges between 4.5 and 5.0. The lysosomal pH is maintained by the v-ATPase, a proton pump. Lysosomal degradation generates catabolites, which can be recycled to cytosol by secondary active transporters: lysosomal transporters.The dysfunction of lysosomal proteins leads to lysosomal storage disorders (LSDs), rare inherited metabolic diseases characterised by accumulation of material inside lysosomes. Depending on the mutated gene, symptoms of LSDs vary greatly, although about half of LSD patients display some kind of neurodegenerative symptoms. Studying the physiopathology of LSDs has led to a good understanding of the function of lysosomal enzymes, but the knowledge of lysosomal transporters remain poor, since only a few LSDs has been shown to be linked with a mutation in a lysosomal transporter gene.I focused on two proteins which dysfunction causes a special type of LSDs: CLN3 and CLN7. Mutations in CLN3 and CLN7 cause neuronal ceroid lipofuscinoses (NCLs), a special type of LSD which has mostly neurodegenerative symptoms and which is characterized by the accumulation of a specific pigment inside lysosomes: lipofuscin. There are fourteen NCL genes, but CLN3 and CLN7 are the two only proteins of the family which are resident proteins of the lysosomal membrane, suggesting they might be transporters.Amino acids were screened as possible substrates for CLN7, but none could be shown to be transported. For CLN3, the content in metabolites of lysosomes from Cln3-deficient mice and from WT mice were compared by mass spectrometry, revealing a specific decrease in the amount of catabolites of proteins in lysosomes from Cln3-deficient mice. This suggested a lack of lysosomal proteolysis, which was checked in neurons, in primary fibroblasts and in immortalized fibroblasts. These results suggested that CLN proteins could take part to a metabolic pathway important for lysosomal proteolysis and, more generally, for neuronal health. These results could help improve the understanding of the early steps of NCL physiopathology.To extend the number of candidates for lysosomal transporters, I took part to the validation step of an extensive proteomic study of the lysosomal membrane, which revealed forty-six new candidates for lysosomal transporters. I studied in more details TMEM104, SPINSTER, MFSD1, SLC37A2, TTYH3 and SNAT7. Proteins were overexpressed in HeLa cells to check for lysosomal localization. Then, their putative sorting motifs were mutated to misroute their expression to plasma membrane and to enable their functional study. No function could elucidate for the first five candidates.SNAT7 could not be misrouted to plasma membrane either, but, since it belonged to a family of transporters for glutamine, its function was studied by an indirect assay based on a lysosomal overload in amino acids and a direct transport measure on lysosome-enriched cellular fractions. Thus, SNAT7 was shown to be a lysosomal transporter selective for glutamine and asparagine.The function of SNAT7 is the nutrition of cancer cells was then studied. Many cancer cells use glutamine as their main source of carbon, nitrogen and energy. Because of insufficient blood supply, they use macropinocytosis to uptake extracellular proteins, which degradation in lysosomes generates glutamine. Then, glutamine is recycled to the cytosol. SNAT7 was shown to be critical in this process: in glutamine-dependent cancer cells, when SNAT7 expression is reduced, cells cannot obtain glutamine from extracellular proteins. Thus, blocking SNAT7 is a promising approach to target specifically the metabolism of cancer cells.Les lysosomes contiennent environ soixante hydrolases diffĂ©rentes, qui peuvent dĂ©grader une grande variĂ©tĂ© de macromolĂ©cules. L’activitĂ© de ces enzymes est dĂ©pendante du pH, maintenu dans les lysosomes entre 4.5 et 5.0 par une pompe Ă  protons : la v-ATPase. Les produits de dĂ©gradation sont recyclĂ©s dans le cytoplasme par des transporteurs actifs secondaires de la membrane des lysosomes.Les maladies de surcharges lysosomales sont causĂ©es par des mutations de gĂšnes codant pour des protĂ©ines lysosomales, souvent des enzymes. Elles sont caractĂ©risĂ©es par un engorgement des lysosomes avec des agrĂ©gats ou des cristaux. Les symptĂŽmes associĂ©s Ă  ces maladies sont variĂ©s, mais la moitiĂ© d’entre elles induisent des dĂ©fauts neurologiques. L’étude de ces maladies a permis d’élucider la fonction de nombreuses enzymes, mais la connaissance des transporteurs lysosomaux reste parcellaire. Peu de ces transporteurs sont ainsi caractĂ©risĂ©s au niveau molĂ©culaire.Je me suis intĂ©ressĂ© Ă  deux gĂšnes dont la mutation provoque une maladie de surcharge particuliĂšre : CLN3 et CLN7. Leur mutation provoque des cĂ©roĂŻdes lipofuscinoses neuronales, des maladies de surcharge lysosomales caractĂ©risĂ©es par une neurodĂ©gĂ©nĂ©rescence prĂ©coce et par l’accumulation dans les lysosomes d’un pigment autofluorescent, la lipofuscine. La mutation de 14 gĂšnes diffĂ©rents cause une cĂ©roĂŻde lipofuscinose neuronale. J’ai Ă©tudiĂ© CLN3 et CLN7 car ils codaient pour des protĂ©ines membranaires du lysosome, qui pourraient donc ĂȘtre des transporteurs.Sur CLN7, j’ai effectuĂ© des tests de transport en utilisant les acides aminĂ©s comme substrats potentiels, sans rĂ©sultats probants. Concernant CLN3, le contenu mĂ©tabolique de lysosomes a Ă©tĂ© Ă©tudiĂ© par spectromĂ©trie de masse dans des souris WT ou de souris oĂč le gĂšne CLN3 Ă©tait dĂ©ficient. Les lysosomes des cellules dĂ©ficientes contenaient moins de produits de la protĂ©olyse, ce qui suggĂ©rait que CLN3 Ă©tait important pour la protĂ©olyse lysosomale. Cela a Ă©tĂ© confirmĂ© par des mesures plus directes sur des neurones et des fibroblastes primaires, et sur des fibroblastes immortalisĂ©s. Ces rĂ©sultats pourraient aider Ă  comprendre les premiĂšres Ă©tapes de la physiopathologie dans les cellules oĂč des gĂšnes CLN sont dĂ©ficients.Pour accroĂźtre le nombre de transporteurs lysosomaux potentiels, j’ai participĂ© Ă  la finalisation d’une Ă©tude par protĂ©omique de la membrane lysosomale. Elle a rĂ©vĂ©lĂ© 46 potentiels transporteurs de fonction encore inconnue. Dans cette liste, j’ai Ă©tudiĂ© TMEM104, SPINSTER, MFSD1, SLC37A2, TTYH3 et SNAT7. Pour ce faire, j’ai d’abord mutĂ© les motifs d’adressage de ces protĂ©ines pour les rediriger, lors de leur synthĂšse, vers la membrane plasmique, afin de faciliter leur Ă©tude. Aucune fonction claire n’a pu ĂȘtre identifiĂ©e par cette approche.SNAT7 appartenait cependant Ă  une famille de transporteurs de glutamine, ce qui Ă©tait suffisamment encourageant pour envisager d’autres approches. Sa fonction a ainsi Ă©tĂ© Ă©tudiĂ©e en dĂ©veloppement un nouveau test indirect basĂ© sur la dĂ©tection d’une surcharge artificielle des lysosomes en acides aminĂ©s. Un test fonctionnel plus direct a ensuite Ă©tĂ© mis au point sur des fractions enrichies en lysosomes en utilisant des acides aminĂ©s radiomarquĂ©s. Ces deux tests ont montrĂ© que SNAT7 Ă©tait un transporteur spĂ©cifique de l’asparagine et de la glutamine.J’ai enfin Ă©tudiĂ© l’hypothĂšse suggĂ©rant que SNAT7 pourrait jouer dans la nutrition de cellules cancĂ©reuses. En effet, certaines utilisent la glutamine comme nutriment principal Ă  la place du glucose ; mais les apports sanguins en glutamine, dans les tumeurs, sont parfois insuffisants. La glutamine est donc obtenue par macropinocytose de protĂ©ines extracellulaires et dĂ©gradation lysosomale de ces protĂ©ines, avant un recyclage vers le cytoplasme. J’ai montrĂ© qu’en l’absence de SNAT7, ce phĂ©nomĂšne Ă©tait bloquĂ©. SNAT7 est donc une cible thĂ©rapeutique intĂ©ressante pour tenter de bloquer l’approvisionnement des cellules cancĂ©reuses en glutamine

    Towards the Elucidation of Orphan Lysosomal Transporters

    No full text
    Les lysosomes contiennent environ soixante hydrolases diffĂ©rentes, qui peuvent dĂ©grader une grande variĂ©tĂ© de macromolĂ©cules. L’activitĂ© de ces enzymes est dĂ©pendante du pH, maintenu dans les lysosomes entre 4.5 et 5.0 par une pompe Ă  protons : la v-ATPase. Les produits de dĂ©gradation sont recyclĂ©s dans le cytoplasme par des transporteurs actifs secondaires de la membrane des lysosomes.Les maladies de surcharges lysosomales sont causĂ©es par des mutations de gĂšnes codant pour des protĂ©ines lysosomales, souvent des enzymes. Elles sont caractĂ©risĂ©es par un engorgement des lysosomes avec des agrĂ©gats ou des cristaux. Les symptĂŽmes associĂ©s Ă  ces maladies sont variĂ©s, mais la moitiĂ© d’entre elles induisent des dĂ©fauts neurologiques. L’étude de ces maladies a permis d’élucider la fonction de nombreuses enzymes, mais la connaissance des transporteurs lysosomaux reste parcellaire. Peu de ces transporteurs sont ainsi caractĂ©risĂ©s au niveau molĂ©culaire.Je me suis intĂ©ressĂ© Ă  deux gĂšnes dont la mutation provoque une maladie de surcharge particuliĂšre : CLN3 et CLN7. Leur mutation provoque des cĂ©roĂŻdes lipofuscinoses neuronales, des maladies de surcharge lysosomales caractĂ©risĂ©es par une neurodĂ©gĂ©nĂ©rescence prĂ©coce et par l’accumulation dans les lysosomes d’un pigment autofluorescent, la lipofuscine. La mutation de 14 gĂšnes diffĂ©rents cause une cĂ©roĂŻde lipofuscinose neuronale. J’ai Ă©tudiĂ© CLN3 et CLN7 car ils codaient pour des protĂ©ines membranaires du lysosome, qui pourraient donc ĂȘtre des transporteurs.Sur CLN7, j’ai effectuĂ© des tests de transport en utilisant les acides aminĂ©s comme substrats potentiels, sans rĂ©sultats probants. Concernant CLN3, le contenu mĂ©tabolique de lysosomes a Ă©tĂ© Ă©tudiĂ© par spectromĂ©trie de masse dans des souris WT ou de souris oĂč le gĂšne CLN3 Ă©tait dĂ©ficient. Les lysosomes des cellules dĂ©ficientes contenaient moins de produits de la protĂ©olyse, ce qui suggĂ©rait que CLN3 Ă©tait important pour la protĂ©olyse lysosomale. Cela a Ă©tĂ© confirmĂ© par des mesures plus directes sur des neurones et des fibroblastes primaires, et sur des fibroblastes immortalisĂ©s. Ces rĂ©sultats pourraient aider Ă  comprendre les premiĂšres Ă©tapes de la physiopathologie dans les cellules oĂč des gĂšnes CLN sont dĂ©ficients.Pour accroĂźtre le nombre de transporteurs lysosomaux potentiels, j’ai participĂ© Ă  la finalisation d’une Ă©tude par protĂ©omique de la membrane lysosomale. Elle a rĂ©vĂ©lĂ© 46 potentiels transporteurs de fonction encore inconnue. Dans cette liste, j’ai Ă©tudiĂ© TMEM104, SPINSTER, MFSD1, SLC37A2, TTYH3 et SNAT7. Pour ce faire, j’ai d’abord mutĂ© les motifs d’adressage de ces protĂ©ines pour les rediriger, lors de leur synthĂšse, vers la membrane plasmique, afin de faciliter leur Ă©tude. Aucune fonction claire n’a pu ĂȘtre identifiĂ©e par cette approche.SNAT7 appartenait cependant Ă  une famille de transporteurs de glutamine, ce qui Ă©tait suffisamment encourageant pour envisager d’autres approches. Sa fonction a ainsi Ă©tĂ© Ă©tudiĂ©e en dĂ©veloppement un nouveau test indirect basĂ© sur la dĂ©tection d’une surcharge artificielle des lysosomes en acides aminĂ©s. Un test fonctionnel plus direct a ensuite Ă©tĂ© mis au point sur des fractions enrichies en lysosomes en utilisant des acides aminĂ©s radiomarquĂ©s. Ces deux tests ont montrĂ© que SNAT7 Ă©tait un transporteur spĂ©cifique de l’asparagine et de la glutamine.J’ai enfin Ă©tudiĂ© l’hypothĂšse suggĂ©rant que SNAT7 pourrait jouer dans la nutrition de cellules cancĂ©reuses. En effet, certaines utilisent la glutamine comme nutriment principal Ă  la place du glucose ; mais les apports sanguins en glutamine, dans les tumeurs, sont parfois insuffisants. La glutamine est donc obtenue par macropinocytose de protĂ©ines extracellulaires et dĂ©gradation lysosomale de ces protĂ©ines, avant un recyclage vers le cytoplasme. J’ai montrĂ© qu’en l’absence de SNAT7, ce phĂ©nomĂšne Ă©tait bloquĂ©. SNAT7 est donc une cible thĂ©rapeutique intĂ©ressante pour tenter de bloquer l’approvisionnement des cellules cancĂ©reuses en glutamine.Within lysosomes, about sixty different hydrolases degrade macromolecules. This degradation is dependent on the acidity of the lysosomal lumen, which pH ranges between 4.5 and 5.0. The lysosomal pH is maintained by the v-ATPase, a proton pump. Lysosomal degradation generates catabolites, which can be recycled to cytosol by secondary active transporters: lysosomal transporters.The dysfunction of lysosomal proteins leads to lysosomal storage disorders (LSDs), rare inherited metabolic diseases characterised by accumulation of material inside lysosomes. Depending on the mutated gene, symptoms of LSDs vary greatly, although about half of LSD patients display some kind of neurodegenerative symptoms. Studying the physiopathology of LSDs has led to a good understanding of the function of lysosomal enzymes, but the knowledge of lysosomal transporters remain poor, since only a few LSDs has been shown to be linked with a mutation in a lysosomal transporter gene.I focused on two proteins which dysfunction causes a special type of LSDs: CLN3 and CLN7. Mutations in CLN3 and CLN7 cause neuronal ceroid lipofuscinoses (NCLs), a special type of LSD which has mostly neurodegenerative symptoms and which is characterized by the accumulation of a specific pigment inside lysosomes: lipofuscin. There are fourteen NCL genes, but CLN3 and CLN7 are the two only proteins of the family which are resident proteins of the lysosomal membrane, suggesting they might be transporters.Amino acids were screened as possible substrates for CLN7, but none could be shown to be transported. For CLN3, the content in metabolites of lysosomes from Cln3-deficient mice and from WT mice were compared by mass spectrometry, revealing a specific decrease in the amount of catabolites of proteins in lysosomes from Cln3-deficient mice. This suggested a lack of lysosomal proteolysis, which was checked in neurons, in primary fibroblasts and in immortalized fibroblasts. These results suggested that CLN proteins could take part to a metabolic pathway important for lysosomal proteolysis and, more generally, for neuronal health. These results could help improve the understanding of the early steps of NCL physiopathology.To extend the number of candidates for lysosomal transporters, I took part to the validation step of an extensive proteomic study of the lysosomal membrane, which revealed forty-six new candidates for lysosomal transporters. I studied in more details TMEM104, SPINSTER, MFSD1, SLC37A2, TTYH3 and SNAT7. Proteins were overexpressed in HeLa cells to check for lysosomal localization. Then, their putative sorting motifs were mutated to misroute their expression to plasma membrane and to enable their functional study. No function could elucidate for the first five candidates.SNAT7 could not be misrouted to plasma membrane either, but, since it belonged to a family of transporters for glutamine, its function was studied by an indirect assay based on a lysosomal overload in amino acids and a direct transport measure on lysosome-enriched cellular fractions. Thus, SNAT7 was shown to be a lysosomal transporter selective for glutamine and asparagine.The function of SNAT7 is the nutrition of cancer cells was then studied. Many cancer cells use glutamine as their main source of carbon, nitrogen and energy. Because of insufficient blood supply, they use macropinocytosis to uptake extracellular proteins, which degradation in lysosomes generates glutamine. Then, glutamine is recycled to the cytosol. SNAT7 was shown to be critical in this process: in glutamine-dependent cancer cells, when SNAT7 expression is reduced, cells cannot obtain glutamine from extracellular proteins. Thus, blocking SNAT7 is a promising approach to target specifically the metabolism of cancer cells

    Les infections génitales hautes : bases microbiologiques du diagnostic et du traitement

    No full text
    National audiencePelvic inflammatory disease (PID) is caused by a large spectrum of micro-organisms. However, the microbiological cause is unknown in approximately half of cases according to varying series. In the context of sexually transmitted disease (STD), the most frequently identified microorganisms causing PID are Neisseria gonorrhoeae, Chlamydia trachomatis and Mycoplasma genitalium. In such cases, bacterial vaginosis and Trichomonas vaginalis are frequently associated. In case of complicated PID or when PID is the consequence of delivery, abortion, intra-uterine procedure, bacteria that come from vaginal carriage may be encountered: Enterobacteriacae, Staphylococcus spp., Streptococcus spp., anaerobes. Mycopslama hominis as well as Ureaplasma urealyticum may also be found in this context. The microbiological diagnosis may be performed on samples of vaginal liquid, endocervix or, when available, surgical specimens. The microbiological diagnostic procedures that are used to identify these microrgansims are reviewed. Vaginal sampling may help to identify N. gonorrhoeae, C. trachomatis and M. genitalium using nucleic acid amplification tests (NAAT), and is also of interest because of the epidemiological association of PID to bacterial vaginosis and trichomoniasis. Samples from the endocervix, and if available, from endometrial biopsy surgical procedures, should be processed to detect N. gonorrhoeae, C. trachomatis and M. genitalium using NAAT, and to search for the presence of Neisseria gonorrhoeae (antibiogram should be performed), facultative anaerobes, anaerobes and capnophilic bacteria. The antibiotic treatment should at least cover N. gonorrhoeae, C. trachomatis and M. genitalium, and for most of the authors, anaerobes. In case, microbiological studies demonstrate the role of other bacteria (e.g., Enterobacteriacae), theses should be treated according to the results of antibiogram.Les infections gĂ©nitales hautes (IGH) sont caractĂ©risĂ©es microbiologiquement par la multiplicitĂ© des agents potentiellement impliquĂ©s qui dĂ©pendent des circonstances de survenue. Dans un contexte d’infections sexuellement transmissibles (IST), Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium dominent le tableau Ă©tiologique, et la vaginose bactĂ©rienne et l’infection Ă  Trichomanas vaginalis sont assez rĂ©guliĂšrement associĂ©es. Dans les formes compliquĂ©es ou anciennes ou consĂ©cutives Ă  un accouchement, un avortement ou Ă  un geste endo-utĂ©rin, les bactĂ©ries issues du portage vaginal sont les causes principales. Il s’agit en particulier des entĂ©robactĂ©ries, des streptocoques et staphylocoques, des bactĂ©ries anaĂ©robies voire Mycoplasma hominis et Ureaplasma urealyticum. L’intĂ©rĂȘt et les modalitĂ©s des prĂ©lĂšvements vaginaux, de l’endocol, endo-utĂ©rins et peropĂ©ratoires sont revus et discutĂ©s. Le prĂ©lĂšvement vaginal se justifie en raison de la nĂ©cessitĂ© de rechercher la vaginose et T. vaginalis frĂ©quemment associĂ©s aux IGH et en raison des trĂšs bonnes performances de ce prĂ©lĂšvement, dĂ©montrĂ©es rĂ©cemment, pour rechercher N. gonorrhoeae, C. trachomatis, M. genitalium par tests d’amplification des acides nuclĂ©iques (TAAN). Le prĂ©lĂšvement d’endocol — prĂ©lĂšvement endo-utĂ©rin facile Ă  rĂ©aliser — la biopsie d’endomĂštre et les prĂ©lĂšvements peropĂ©ratoires permettent aussi de rechercher les agents d’IST par les TAAN, et sont de plus les seuls informatifs pour rechercher par culture N. gonorrhoeae, les bactĂ©ries aĂ©ro-anaĂ©robies, capnophiles et anaĂ©robies stricts afin de disposer d’un antibiogramme. L’antibiothĂ©rapie devra couvrir les agents des IST, les bactĂ©ries isolĂ©es par cultures et les anaĂ©robies, et ce mĂȘme si la place exacte de ces derniers reste discutĂ©e et Ă  prĂ©ciser

    Enhancing the metacognition of nursing students using eye tracking glasses

    No full text
    Practical simulation is increasingly used to develop reasoning skills during learning. The analysis of the scene and the correct execution of actions require an awareness of the situation and the activities performed by the student. Eye-tracking feedback (i.e., a video recording of the practical simulation with an overlay of the gaze point) can allow students and teachers to enhance the skills of analysis and execution of the practical activities performed. In this article, we present the implementation of an innovative pedagogical process for nursing students in Switzerland. It involves the use of eye-tracking glasses to improve learning through the enhancement of metacognition after a simulation. The results of a first test session done with 15 undergraduate students are reported

    Updated French guidelines for diagnosis and management of pelvic inflammatory disease

    No full text
    International audienceBackground: Pelvic inflammatory disease (PID) is commonly encountered in ă clinical practice. Objectives: To provide up-to-date guidelines on ă management of PID. Search strategy: An initial search of the Cochrane ă database, PubMed, and Embase was performed using keywords related to PID ă to identify reports in any language published between January 1990 and ă January 2012, with an update in May 2015. Selection criteria: All ă identified reports relevant to the areas of focus were included. Data ă collection and analysis: A level of evidence based on the quality of the ă data available was applied for each area of focus and used for the ă guidelines. Main results: PID must be suspected when spontaneous pelvic ă pain is associated with induced adnexal or uterine pain (grade C). ă Pelvic ultrasonography is necessary to exclude tubo-ovarian abscess ă (grade B). Microbiological diagnosis requires vaginal and endocervical ă sampling for molecular and bacteriological analysis (grade B). ă First-line treatment for uncomplicated PID combines ofloxacin and ă metronidazole for 14 days (grade B). Treatment of tubo-ovarian abscess ă is based on drainage if the collection measures more than 3 cm (grade ă B), with combined ceftriaxone, metronidazole, and doxycycline for 14-21 ă days. Conclusions: Current management of PID requires easily ă reproducible investigations and treatment, and thus can be applied ă worldwide. (C) 2016 International Federation of Gynecology and ă Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved
    corecore