10 research outputs found

    GRACE Score Validation in Predicting Hospital Mortality: Analysis of the Role of Sex

    Get PDF
    Background: The GRACE (Global Registry of Acute Coronary Events) risk score is recommended for risk stratification in acute coronary syndrome (ACS). It does not include sex, a variable strongly associated with ACS prognosis. The aim of this study was to examine if sex adds prognostic information to the GRACE score in a contemporary population. Materials and Methods: Analysis of discrimination and calibration of GRACE score in the validation population, derived from the ARIAM-SEMICYUC registry (2012-2015). Outcome was hospital mortality. The uniformity of fit of the score was tested in predefined subpopulations: with and without ST-segment elevation myocardial infarction (STEMI and NSTEMI). Results: A total of 9781 patients were included: 4598 with NSTEMI (28% women) and 5183 with STEMI (23% women). Discriminative capacity of the GRACE score was significantly lower in women with STEMI compared to men (area under the receiver operating characteristic curve [AUC] 0.82, 95% CI 0.78-0.86 vs. AUC 0.90, 95% CI 0.88-0.92, p = 0.0006). In multivariate analysis, female sex predicted hospital mortality independently of GRACE in STEMI (p = 0.019) but not in NSTEMI (p = 0.356) (interaction p = 0.0308). However, neither the AUC nor the net reclassification index (NRI) improved by including female sex in the STEMI subpopulation (NRI 0.0011, 95% CI -0.023 to 0.025; p = 0.928). Conclusions: Although female sex was an independent predictor of hospital mortality in the STEMI subpopulation, it does not substantially improve the discriminative ability of GRACE score

    Burkitt-like lymphoma with 11q aberration: A germinal center derived lymphoma genetically unrelated to Burkitt lymphoma

    Get PDF
    Burkitt-like lymphoma with 11q aberration is characterized by pathological features and gene expression profile resembling Burkitt lymphoma but lack MYC rearrangement and carries an 11q-arm aberration with proximal gains and telomeric losses. Whether these lymphomas are a distinct category or a particular variant of other recognized entities is controversial. To improve the understanding of Burkitt-like lymphoma with 11q aberration we have performed an analysis of copy number alterations and targeted sequencing of a large panel of B-cell lymphoma related genes in 11 cases. Most patients had localized nodal disease and a favourable outcome after therapy. Histologically, they were high grade B-cell lymphoma, not otherwise specified (8 cases), diffuse large B-cell lymphoma (2 cases) and only one was considered as atypical Burkitt lymphoma. All cases had a germinal center B-cell signature and phenotype with frequent LMO2 expression. Burkitt-like lymphoma with 11q aberration had frequent gains of 12q12-q21.1 and losses of 6q12.1-q21, and lacked common Burkitt lymphoma or diffuse large B-cell lymphoma alterations. Potential driver mutations were found in 27 genes, particularly involving BTG2, DDX3X, ETS1, EP300, and GNA13. However, ID3, TCF3, or CCND3 mutations were absent in all cases. These results suggest that Burkitt-like lymphoma with 11q aberration is a germinal center derived lymphoma closer to high grade B-cell lymphoma or diffuse large B-cell lymphoma rather than Burkitt lymphoma.Copyright © 2019, Ferrata Storti Foundation

    Diverse mutations and structural variations contribute to Notch signaling deregulation in paediatric T-cell lymphoblastic lymphoma

    Get PDF
    Background T-cell lymphoblastic lymphoma (T-LBL) is an aggressive neoplasm closely related to T-cell acute lymphoblastic leukaemia (T-ALL). Despite their similarities, and contrary to T-ALL, studies on paediatric T-LBL are scarce and, therefore, its molecular landscape has not yet been fully elucidated. Thus, the aims of this study were to characterize the genetic and molecular heterogeneity of paediatric T-LBL and to evaluate novel molecular markers differentiating this entity from T-ALL. Procedure Thirty-three paediatric T-LBL patients were analyzed using an integrated approach, including targeted next-generation sequencing, RNA-sequencing transcriptome analysis and copy-number arrays. Results Copy number and mutational analyses allowed the detection of recurrent homozygous deletions of 9p/CDKN2A (78%), trisomy 20 (19%) and gains of 17q24-q25 (16%), as well as frequent mutations of NOTCH1 (62%), followed by the BCL11B (23%), WT1 (19%) and FBXW7, PHF6 and RPL10 genes (15%, respectively). This genetic profile did not differ from that described in T-ALL in terms of mutation incidence and global genomic complexity level, but unveiled virtually exclusive 17q25 gains and trisomy 20 in T-LBL. Additionally, we identified novel gene fusions in paediatric T-LBL, including NOTCH1-IKZF2, RNGTT-SNAP91 and DDX3X-MLLT10, the last being the only one previously described in T-ALL. Moreover, clinical correlations highlighted the presence of Notch pathway alterations as a factor related to favourable outcome. Conclusions In summary, the genomic landscape of paediatric T-LBL is similar to that observed in T-ALL, and Notch signaling pathway deregulation remains the cornerstone in its pathogenesis, including not only mutations but fusion genes targeting NOTCH1.We thank the centres of the Sociedad Espanola de Hematologia y Oncologia Pediatricas that submitted cases for consultation, to Noelia Garcia, Silvia Martin and Helena Suarez for their excellent technical assistance and to Nerea Dominguez for updating clinical data. We are indebted to the IDIBAPS Genomics Core Facility and to the HCB-IDIBAPS, the HospitaI Infantil Sant Joan de Deu and the Hospital Universitari Vall d'Hebron Tumour Biobanks, all integrated in the National Network Biobanks of ISCIII for the sample and data procurement. This work was supported by Asociacion Espanola Contra el Cancer (AECC CICPFI6025SALA and 'Ayudas Clinico Formacion AECC 2020' to Jaime Verdu-Amoros), Asociacion de aitas y amas para la humanizacion, socializacion e investigacion del Cancer Infantil y la divulgacion de la donacion de medula osea-La Cuadri del Hospi, Fondo de Investigaciones Sanitarias Instituto de Salud Carlos III (Miguel Servet Program I and II CP13/00159 and MSII18/00015; Itziar Salaverria), Generalitat de Catalunya Suport Grups de Recerca (2017-SGR-1107; Itziar Salaverria), and the European Regional Development Fund 'Una manera de fer Europa'. Joan Enric Ramis-Zaldivar was supported by a fellowship AGAUR FI-DGR 2017 (2017 FI_B01004) from Generalitat de Catalunya. Noelia Garcia has been continuously supported by Accio instrumental d'incorporacio de cientifics i tecnlegs PERIS 2016 (SLT002/16/00336) and PERIS 2020 (SL017/20/000204) from Generalitat de Catalunya. Julia Salmeron-Villalobos was supported by a fellowship from La Caixa (CLLEvolution-HR17-00221). This work was developed partially at the Centro Esther Koplowitz, Barcelona, Spain

    Immunotherapy with CAR-T cells in paediatric haematology-oncology

    Full text link
    Despite being a rare disease, cancer is the first cause of mortality due to disease during the paediatric age in the developed countries. The current, great increase in new treatments, such as immunotherapy, constitutes a new clinical and regulatory paradigm. Cellular immunotherapy is one of these types of immunotherapy. In particular, the advanced therapy drugs with chimeric antigen receptors in the T-lymphocytes (CAR-T), and particularly the CAR-T19 cells, has opened up a new scenario in the approach to haematology tumours like acute lymphoblastic leukaemia and the B-Cell lymphomas. The approval of tisagenlecleucel and axicabtagene ciloleucel by the regulatory authorities has led to the setting up of the National Plan for Advanced Therapies-CAR-T drugs in Spain. There is evidence of, not only the advantage of identifying the centres most suitable for their administration, but also the need for these to undergo a profound change in order that their healthcare activity is extended, in some cases, to the ability for the in-house manufacture of these types of therapies. The hospitals specialised in paediatric haematology-oncology thus have the challenge of progressing towards a healthcare model that integrates cellular immunotherapy, having the appropriate capacity to manage all aspects relative to their use, manufacture, and administration of these new treatments.A pesar de ser una enfermedad rara, el cáncer es la primera causa de mortalidad por enfermedad durante la edad pediátrica en los países desarrollados. En este momento, la irrupción de nuevos tratamientos como la inmunoterapia constituye un nuevo paradigma clínico y regulatorio. Uno de estos tipos de inmunoterapia es la inmunoterapia celular. En particular, los medicamentos de terapia avanzada con receptores antigénicos quiméricos en los linfocitos T (CAR-T), y en concreto las células CAR-T19, han supuesto un nuevo escenario en el abordaje de los tumores hematológicos, como la leucemia aguda linfoblástica y los linfomas de células tipo B. La aprobación por las autoridades regulatorias de tisagenlecleucel y axicabtagene ciloleucel,ha impulsado la puesta en marcha del Plan Nacional de Terapias Avanzadas-Medicamentos CAR-T en España, evidenciándose no solo la conveniencia de identificar los centros más adecuados para su administración, sino la necesidad de que estos sufran una profunda transformación para que su actividad asistencial se extienda en algunos casos a la capacidad de fabricación propia de este tipo de terapias. Los hospitales especializados en hematooncología pediátrica tienen por tanto el reto de evolucionar hacia un modelo asistencial que integre la inmunoterapia celular,dotándose de capacidad propia para gestionar todos los aspectos relativos al uso, fabricación y administración de estos nuevos tratamientos.Fundación CRIS contra el cáncer

    Pediatric Precursor B-Cell Lymphoblastic Malignancies: From Extramedullary to Medullary Involvement

    Get PDF
    B-cell lymphoblastic lymphoma (BCP-LBL) and B-cell acute lymphoblastic leukemia (BCP-ALL) are the malignant counterparts of immature B-cells. BCP-ALL is the most common hematological malignancy in childhood, while BCP-LBL accounts for only 1% of all hematological malignancies in children. Therefore, BCP-ALL has been well studied and treatment protocols have changed over the last decades, whereas treatment for BCP-LBL has stayed roughly the same. Clinical characteristics of 364 pediatric patients with precursor B-cell malignancies were studied, consisting of BCP-LBL (n = 210) and BCP-ALL (n = 154) patients. Our results indicate that based on the clinical presentation of disease, B-cell malignancies probably represent a spectrum ranging from complete isolated medullary disease to apparent complete extramedullary disease. Hepatosplenomegaly and peripheral blood involvement are the most important discriminators, as both seen in 80% and 95% of the BCP-ALL patients and in 2% of the BCP-LBL patients, respectively. In addition, we show that the overall survival rates in this cohort differ significantly between BCP-LBL and BCP-ALL patients aged 1–18 years (p = 0.0080), and that the outcome for infants (0–1 years) with BCP-LBL is significantly decreased compared to BCP-LBL patients of all other pediatric ages (p < 0.0001)

    Burkitt-like lymphoma with 11q aberration: a germinal center-derived lymphoma genetically unrelated to Burkitt lymphoma

    Get PDF
    Burkitt-like lymphoma with 11q aberration is characterized by pathological features and gene expression profile resembling those of Burkitt lymphoma but lacks the MYC rearrangement and carries an 11q-arm aberration with proximal gains and telomeric losses. Whether this lymphoma is a distinct category or a particular variant of other recognized entities is controversial. To improve the understanding of Burkitt-like lymphoma with 11q aberration we performed an analysis of copy number alterations and targeted sequencing of a large panel of B-cell lymphomarelated genes in 11 cases. Most patients had localized nodal disease and a favorable outcome after therapy. Histologically, they were high grade B-cell lymphoma, not otherwise specified (8 cases), diffuse large B-cell lymphoma (2 cases) and only one was considered as atypical Burkitt lymphoma. All cases had a germinal center B-cell signature and phenotype with frequent LMO2 expression. The patients with Burkitt-like lymphoma with 11q aberration had frequent gains of 12q12-q21.1 and losses of 6q12.1-q21, and lacked common Burkitt lymphoma or diffuse large B-cell lymphoma alterations. Potential driver mutations were found in 27 genes, particularly involving BTG2, DDX3X, ETSI , EP300, and GNA13. However, ID3, TCF3, or CCND3 mutations were absent in all cases. These results suggest that Burkitt-like lymphoma with 11q aberration is a germinal center-derived lymphoma closer to high-grade B-cell lymphoma or diffuse large B-cell lymphoma than to Burkitt lymphoma.This work was supported by Asociacion Espanola Contra el Cancer (AECC CICPFI6025SALA), Fondo de Investigaciones Sanitarias Instituto de Salud Carlos III (Miguel Servet program CP13/00159 and PI15/00580, to IS), Spanish Ministerio de Economia y Competitividad, Grant SAF2015-64885-R (EC), Generalitat de Catalunya Suport Grups de Recerca (2017-SGR-1107 I.S. and 2017-SGR-1142 to EC), and the European Regional Development Fund "Una manera de fer Europa". JERZ was supported by a fellowship from the Generalitat de Catalunya AGAUR FI-DGR 2017 (2017 FI_B01004). EC is an Academia Researcher of the "Institucio Catalana de Recerca i Estudis Avancats" (ICREA) of the Generalitat de Catalunya. This work was developed at the Centro Esther Koplowitz, Barcelona, Spain. The group is supported by Accio Instrumental d'Incorporacio de Cientifics i Tecnolegs PERIS 2016 (SLT002/16/00336) from the Generalitat de Catalunya

    Diverse mutations and structural variations contribute to Notch signaling deregulation in paediatric T-cell lymphoblastic lymphoma.

    No full text
    T-cell lymphoblastic lymphoma (T-LBL) is an aggressive neoplasm closely related to T-cell acute lymphoblastic leukaemia (T-ALL). Despite their similarities, and contrary to T-ALL, studies on paediatric T-LBL are scarce and, therefore, its molecular landscape has not yet been fully elucidated. Thus, the aims of this study were to characterize the genetic and molecular heterogeneity of paediatric T-LBL and to evaluate novel molecular markers differentiating this entity from T-ALL. Thirty-three paediatric T-LBL patients were analyzed using an integrated approach, including targeted next-generation sequencing, RNA-sequencing transcriptome analysis and copy-number arrays. Copy number and mutational analyses allowed the detection of recurrent homozygous deletions of 9p/CDKN2A (78%), trisomy 20 (19%) and gains of 17q24-q25 (16%), as well as frequent mutations of NOTCH1 (62%), followed by the BCL11B (23%), WT1 (19%) and FBXW7, PHF6 and RPL10 genes (15%, respectively). This genetic profile did not differ from that described in T-ALL in terms of mutation incidence and global genomic complexity level, but unveiled virtually exclusive 17q25 gains and trisomy 20 in T-LBL. Additionally, we identified novel gene fusions in paediatric T-LBL, including NOTCH1-IKZF2, RNGTT-SNAP91 and DDX3X-MLLT10, the last being the only one previously described in T-ALL. Moreover, clinical correlations highlighted the presence of Notch pathway alterations as a factor related to favourable outcome. In summary, the genomic landscape of paediatric T-LBL is similar to that observed in T-ALL, and Notch signaling pathway deregulation remains the cornerstone in its pathogenesis, including not only mutations but fusion genes targeting NOTCH1

    Burkitt-like lymphoma with 11q aberration: A germinal center derived lymphoma genetically unrelated to Burkitt lymphoma

    No full text
    Burkitt-like lymphoma with 11q aberration is characterized by pathological features and gene expression profile resembling Burkitt lymphoma but lack MYC rearrangement and carries an 11q-arm aberration with proximal gains and telomeric losses. Whether these lymphomas are a distinct category or a particular variant of other recognized entities is controversial. To improve the understanding of Burkitt-like lymphoma with 11q aberration we have performed an analysis of copy number alterations and targeted sequencing of a large panel of B-cell lymphoma related genes in 11 cases. Most patients had localized nodal disease and a favourable outcome after therapy. Histologically, they were high grade B-cell lymphoma, not otherwise specified (8 cases), diffuse large B-cell lymphoma (2 cases) and only one was considered as atypical Burkitt lymphoma. All cases had a germinal center B-cell signature and phenotype with frequent LMO2 expression. Burkitt-like lymphoma with 11q aberration had frequent gains of 12q12-q21.1 and losses of 6q12.1-q21, and lacked common Burkitt lymphoma or diffuse large B-cell lymphoma alterations. Potential driver mutations were found in 27 genes, particularly involving BTG2, DDX3X, ETS1, EP300, and GNA13. However, ID3, TCF3, or CCND3 mutations were absent in all cases. These results suggest that Burkitt-like lymphoma with 11q aberration is a germinal center derived lymphoma closer to high grade B-cell lymphoma or diffuse large B-cell lymphoma rather than Burkitt lymphoma.Copyright © 2019, Ferrata Storti Foundation

    Distinct molecular profile of IRF4-rearranged large B-cell lymphoma.

    No full text
    Pediatric large B-cell lymphomas (LBCLs) share morphological and phenotypic features with adult types but have better prognosis. The higher frequency of some subtypes such as LBCL with IRF4 rearrangement (LBCL-IRF4) in children suggests that some age-related biological differences may exist. To characterize the genetic and molecular heterogeneity of these tumors, we studied 31 diffuse LBCLs (DLBCLs), not otherwise specified (NOS); 20 LBCL-IRF4 cases; and 12 cases of high-grade B-cell lymphoma (HGBCL), NOS in patients ≤25 years using an integrated approach, including targeted gene sequencing, copy-number arrays, and gene expression profiling. Each subgroup displayed different molecular profiles. LBCL-IRF4 had frequent mutations in IRF4 and NF-κB pathway genes (CARD11, CD79B, and MYD88), losses of 17p13 and gains of chromosome 7, 11q12.3-q25, whereas DLBCL, NOS was predominantly of germinal center B-cell (GCB) subtype and carried gene mutations similar to the adult counterpart (eg, SOCS1 and KMT2D), gains of 2p16/REL, and losses of 19p13/CD70. A subset of HGBCL, NOS displayed recurrent alterations of Burkitt lymphoma-related genes such as MYC, ID3, and DDX3X and homozygous deletions of 9p21/CDKN2A, whereas other cases were genetically closer to GCB DLBCL. Factors related to unfavorable outcome were age >18 years; activated B-cell (ABC) DLBCL profile, HGBCL, NOS, high genetic complexity, 1q21-q44 gains, 2p16/REL gains/amplifications, 19p13/CD70 homozygous deletions, and TP53 and MYC mutations. In conclusion, these findings further unravel the molecular heterogeneity of pediatric and young adult LBCL, improve the classification of this group of tumors, and provide new parameters for risk stratification

    X chromosome inactivation does not necessarily determine the severity of the phenotype in Rett syndrome patients

    Get PDF
    Rett syndrome (RTT) is a severe neurological disorder usually caused by mutations in the MECP2 gene. Since the MECP2 gene is located on the X chromosome, X chromosome inactivation (XCI) could play a role in the wide range of phenotypic variation of RTT patients; however, classical methylation-based protocols to evaluate XCI could not determine whether the preferentially inactivated X chromosome carried the mutant or the wild-type allele. Therefore, we developed an allele-specific methylation-based assay to evaluate methylation at the loci of several recurrent MECP2 mutations. We analyzed the XCI patterns in the blood of 174 RTT patients, but we did not find a clear correlation between XCI and the clinical presentation. We also compared XCI in blood and brain cortex samples of two patients and found differences between XCI patterns in these tissues. However, RTT mainly being a neurological disease complicates the establishment of a correlation between the XCI in blood and the clinical presentation of the patients. Furthermore, we analyzed MECP2 transcript levels and found differences from the expected levels according to XCI. Many factors other than XCI could affect the RTT phenotype, which in combination could influence the clinical presentation of RTT patients to a greater extent than slight variations in the XCI pattern
    corecore