10 research outputs found

    Isabelle/DOF: Design and Implementation

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record17th International Conference, SEFM 2019 Oslo, Norway, September 18–20, 2019DOF is a novel framework for defining ontologies and enforcing them during document development and evolution. A major goal of DOF is the integrated development of formal certification documents (e. g., for Common Criteria or CENELEC 50128) that require consistency across both formal and informal arguments. To support a consistent development of formal and informal parts of a document, we provide Isabelle/DOF, an implementation of DOF on top of the formal methods framework Isabelle/HOL. A particular emphasis is put on a deep integration into Isabelleâs IDE, which allows for smooth ontology development as well as immediate ontological feedback during the editing of a document. In this paper, we give an in-depth presentation of the design concepts of DOFâs Ontology Definition Language (ODL) and key aspects of the technology of its implementation. Isabelle/DOF is the first ontology language supporting machine-checked links between the formal and informal parts in an LCF-style interactive theorem proving environment. Sufficiently annotated, large documents can easily be developed collabo- ratively, while ensuring their consistency, and the impact of changes (in the formal and the semi-formal content) is tracked automatically.IRT SystemX, Paris-Saclay, Franc

    A Review of Verification and Validation for Space Autonomous Systems

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: registration 2021-05-13, accepted 2021-05-13, online 2021-06-18, pub-electronic 2021-06-18, pub-print 2021-09Publication status: PublishedFunder: Engineering and Physical Sciences Research Council; doi: https://doi.org/10.13039/501100000266; Grant(s): EP/R026092/1Abstract: Purpose of Review: The deployment of hardware (e.g., robots, satellites, etc.) to space is a costly and complex endeavor. It is of extreme importance that on-board systems are verified and validated through a variety of verification and validation techniques, especially in the case of autonomous systems. In this paper, we discuss a number of approaches from the literature that are relevant or directly applied to the verification and validation of systems in space, with an emphasis on autonomy. Recent Findings: Despite advances in individual verification and validation techniques, there is still a lack of approaches that aim to combine different forms of verification in order to obtain system-wide verification of modular autonomous systems. Summary: This systematic review of the literature includes the current advances in the latest approaches using formal methods for static verification (model checking and theorem proving) and runtime verification, the progress achieved so far in the verification of machine learning, an overview of the landscape in software testing, and the importance of performing compositional verification in modular systems. In particular, we focus on reporting the use of these techniques for the verification and validation of systems in space with an emphasis on autonomy, as well as more general techniques (such as in the aeronautical domain) that have been shown to have potential value in the verification and validation of autonomous systems in space

    A Review of Verification and Validation for Space Autonomous Systems

    Get PDF
    Purpose of Review: The deployment of hardware (e.g., robots, satellites, etc.) to space is a costly and complex endeavor. It is of extreme importance that on-board systems are verified and validated through a variety of verification and validation techniques, especially in the case of autonomous systems. In this paper, we discuss a number of approaches from the literature that are relevant or directly applied to the verification and validation of systems in space, with an emphasis on autonomy. Recent Findings: Despite advances in individual verification and validation techniques, there is still a lack of approaches that aim to combine different forms of verification in order to obtain system-wide verification of modular autonomous systems. Summary: This systematic review of the literature includes the current advances in the latest approaches using formal methods for static verification (model checking and theorem proving) and runtime verification, the progress achieved so far in the verification of machine learning, an overview of the landscape in software testing, and the importance of performing compositional verification in modular systems. In particular, we focus on reporting the use of these techniques for the verification and validation of systems in space with an emphasis on autonomy, as well as more general techniques (such as in the aeronautical domain) that have been shown to have potential value in the verification and validation of autonomous systems in space

    Integration of Formal Proof into Unified Assurance Cases with Isabelle/SACM

    Get PDF
    Assurance cases are often required to certify critical systems. The use of formal methods in assurance can improve automation, increase confidence, and overcome errant reasoning. However, assurance cases can never be fully formalised, as the use of formal methods is contingent on models that are validated by informal processes. Consequently, assurance techniques should support both formal and informal artifacts, with explicated inferential links between them. In this paper, we contribute a formal machine-checked interactive language, called Isabelle/SACM, supporting the computer-assisted construction of assurance cases compliant with the OMG Structured Assurance Case Meta-Model. The use of Isabelle/SACM guarantees well-formedness, consistency, and traceability of assurance cases, and allows a tight integration of formal and informal evidence of various provenance. In particular, Isabelle brings a diverse range of automated verification techniques that can provide evidence. To validate our approach, we present a substantial case study based on the Tokeneer secure entry system benchmark. We embed its functional specification into Isabelle, verify its security requirements, and form a modular security case in Isabelle/SACM that combines the heterogeneous artifacts. We thus show that Isabelle is a suitable platform for critical systems assurance

    Using Isabelle/HOL to develop and maintain separation invariants for an operating system

    No full text
    We describe work on an Isabelle/HOL model for the specification of a separation kernel done within the EURO-MILS (http://www.euromils.eu/) project. We chose to extensible records to specify the state. By an example of a theory specifying a group of "event" API calls, it is shown how lemmas on local state are used for obtaining proof obligations for a global separation property

    Formal Specification of a Generic Separation Kernel

    Get PDF
    Item does not contain fulltextIntransitive noninterference has been a widely studied topic in the last few decades. Several well-established methodologies apply interactive theorem proving to formulate a noninterference theorem over abstract academic models. In joint work with several industrial and academic partners throughout Europe, we are helping in the certification process of PikeOS, an industrial separation kernel developed at SYSGO. In this process, established theories could not be applied. We present a new generic model of separation kernels and a new theory of intransitive noninterference. The model is rich in detail, making it suitable for formal verification of realistic and industrial systems such as PikeOS. Using a refinement-based theorem proving approach, we ensure that proofs remain manageable

    Scheduling for Mixed-criticality Hypervisor Systems in the Automotive Domain

    Get PDF
    This thesis focuses on scheduling for hypervisor systems in the automotive domain. Current practices are primarily implementation-agnostic or are limited by lack of visibility during the execution of partitions. The tasks executed within the partitions are classified as event-triggered or time-triggered. A scheduling model is developed using a pair of a deferrable server and a periodic server per partition to provide low latency for event-triggered tasks and maximising utilisation. The developed approach enforces temporal isolation between partitions and ensures that time-triggered tasks do not suffer from starvation. The scheduling model was extended to support three criticality levels with two degraded modes. The first degraded mode provides the partitions with additional capacity by trading-off low latency of event-driven tasks with lower overheads and utilisation. Both models were evaluated by forming a case study using real ECU application code. A second case study was formed inspired from the Olympus Attitude and Orbital Control System (AOCS) to further evaluate the proposed mixed-criticality model. To conclude, the contributions of this thesis are addressed with respect to the research hypothesis and possible avenues for future work are identified
    corecore