

Formal specification of a generic separation kernel

Citation for published version (APA):
Verbeek, F., Tverdyshev, S., Havle, O., Blasum, H., Langenstein, B., Stephan, W., Nemouchi, Y., Feliachi, A.,
Wolff, B., & Schmaltz, J. (2014). Formal specification of a generic separation kernel. Archive of Formal Proofs,
2014(2014-07-18).

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/6a00c94f-f4b7-4c4c-933a-c466a77092d0

D31.1
Formal Specification of a Generic Separation Kernel

Project number: 318353

Project acronym: EURO-MILS

Project title:
EURO-MILS: Secure European Virtualisation
for Trustworthy Applications in Critical Do-
mains

Start date of the project: 1st October, 2012

Duration: 36 months

Programme: FP7/2007-2013

Deliverable type: R

Deliverable reference number: ICT-318353 / D31.1 / 0.0

Activity and Work package contributing to
deliverable: Activity 3 / WP 3.1

Due date: September 2013 – M12

Actual submission date: 28th August, 2014

Responsible organisation: Open University of The Netherlands

Editors: Freek Verbeek, Julien Schmaltz

Dissemination level: PU

Revision: 0.0 (r-2)

Abstract:

We introduce a theory of intransitive non-
interference for separation kernels with con-
trol. We show that it can be instantiated for
a simple API consisting of IPC and events.

Keywords: separation kernel with control, formal model,
instantiation, IPC, events, Isabelle/HOL

D31.1 – Formal Specification of a Generic Separation Kernel

Editors

Freek Verbeek, Julien Schmaltz (Open University of The Netherlands)

Contributors (ordered according to beneficiary numbers)

Sergey Tverdyshev, Oto Havle, Holger Blasum (SYSGO AG)

Bruno Langenstein, Werner Stephan (Deutsches Forschungszentrum für künstliche Intelligenz / DFKI

GmbH)

Abderrahmane Feliachi, Yakoub Nemouchi, Burkhart Wolff (Université Paris Sud)

Freek Verbeek, Julien Schmaltz (Open University of The Netherlands)

Acknowledgment
The research leading to these results has received funding from the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement n○ 318353.

EURO-MILS D31.1 I

D31.1 – Formal Specification of a Generic Separation Kernel

Executive Summary

Intransitive noninterference has been a widely studied topic in the last few decades. Several well-
established methodologies apply interactive theorem proving to formulate a noninterference theorem
over abstract academic models. In joint work with several industrial and academic partners throughout
Europe, we are helping in the certification process of PikeOS, an industrial separation kernel developed
at SYSGO. In this process, established theories could not be applied. We present a new generic model of
separation kernels and a new theory of intransitive noninterference. The model is rich in detail, making
it suitable for formal verification of realistic and industrial systems such as PikeOS. Using a refinement-
based theorem proving approach, we ensure that proofs remain manageable.

This document corresponds to the deliverable D31.1 of the EURO-MILS Project http://www.euromils.
eu.

EURO-MILS D31.1 II

http://www.euromils.eu
http://www.euromils.eu

D31.1 – Formal Specification of a Generic Separation Kernel

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Binders for the option type . 3
2.2 Theorems on lists . 4

3 A generic model for separation kernels 6
3.1 K (Kernel) . 7

3.1.1 Execution semantics . 8
3.2 SK (Separation Kernel) . 9

3.2.1 Security for non-interfering domains . 10
3.2.2 Security for indirectly interfering domains . 21

3.3 ISK (Interruptible Separation Kernel) . 35
3.4 CISK (Controlled Interruptible Separation Kernel) . 48

3.4.1 Execution semantics . 50
3.4.2 Formulations of security . 51
3.4.3 Proofs . 51

4 Instantiation by a separation kernel with concrete actions 57
4.1 Model of a separation kernel configuration . 58

4.1.1 Type definitions . 58
4.1.2 Configuration . 58

4.2 Formulation of a subject-subject communication policy and an information flow policy,
and showing both can be derived from subject-object configuration data 59
4.2.1 Specification . 59
4.2.2 Derivation . 59

4.3 Separation kernel state and atomic step function . 60
4.3.1 Interrupt points . 60
4.3.2 System state . 61
4.3.3 Atomic step . 61

4.4 Preconditions and invariants for the atomic step . 63
4.4.1 Atomic steps of SK IPC preserve invariants . 64
4.4.2 Summary theorems on atomic step invariants . 65

4.5 The view-partitioning equivalence relation . 66
4.5.1 Elementary properties . 67

4.6 Atomic step locally respects the information flow policy 68
4.6.1 Locally respects of atomic step functions . 68
4.6.2 Summary theorems on view-partitioning locally respects 70

4.7 Weak step consistency . 71
4.7.1 Weak step consistency of auxiliary functions . 71
4.7.2 Weak step consistency of atomic step functions 73
4.7.3 Summary theorems on view-partitioning weak step consistency 75

4.8 Separation kernel model . 75
4.8.1 Initial state of separation kernel model . 76
4.8.2 Types for instantiation of the generic model . 76
4.8.3 Possible action sequences . 77
4.8.4 Control . 78
4.8.5 Discharging the proof obligations . 78

EURO-MILS D31.1 III

D31.1 – Formal Specification of a Generic Separation Kernel

4.9 Link implementation to CISK: the specific separation kernel is an interpretation of the
generic model. 88

5 Related Work 90

6 Conclusion 92
6.0.1 Acknowledgement. 92

EURO-MILS D31.1 Page 1 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

1 Introduction

Separation kernels are at the heart of many modern security-critical systems [23]. With next generation
technology in cars, aircrafts and medical devices becoming more and more interconnected, a platform
that offers secure decomposition of embedded systems becomes crucial for safe and secure performance.
PikeOS, a separation kernel developed at SYSGO, is an operating system providing such an environ-
ment [12, 2]. A consortium of several European partners from industry and academia works on the
certification of PikeOS up to at least Common Criteria EAL5+, with ”+” being applying formal methods
compliant to EAL7. Our aim is to derive a precise model of PikeOS and a precise formulation of the
PikeOS security policy.

A crucial security property of separation kernels is intransitive noninterference. This property is
typically required for systems with multiple independent levels of security (MILS) such as PikeOS. It
ensures that a given security policy over different subjects of the system is obeyed. Such a security policy
dictates which subjects may flow information to which other subjects.

Intransitive noninterference has been an active research field for the last three decades. Several pa-
pers have been published on defining intransitive noninterference and on unwinding methodologies that
enable the proof of intransitive noninterference from local proof obligations. However, in the certifi-
cation process of PikeOS these existing methodologies could not be directly applied. Generally, the
methodologies are based on highly abstract generic models of computation. The gap between such an
abstract model and the reality of PikeOS is large, making application of the methodologies tedious and
cumbersome.

This paper presents a new generic model for separation kernels called CISK (for: Controlled Inter-
ruptible Separation Kernel). This model is richer in details and contains several facets present in many
separation kernels, such as interrupts, context switches between domains and a notion of control. Re-
garding the latter, this concerns the fact that the kernel exercises control over the executions as performed
by the domains. The kernel can, e.g., decide to skip actions of the domains, or abort them halfway. We
prove that any instantiation of the model provides intransitive noninterference. The model and proofs
have been formalized in Isabelle/HOL [21] which are included in the subsequent sections of this docu-
ment.

We have adopted Rushby’s definition of intransitive noninterference [24]. We first present an overview
of our approach and then discuss the relation between our approach and existing methodologies in the
next section.

Overview

Generally, there are two conflicting interests when using a generic model. On the one hand the model
must be sufficiently abstract to ensure that theorems and proofs remain manageable. On the other hand,
the model must be rich enough and must contain sufficient domain-knowledge to allow easy instantiation.
Rushby’s model, for example, is on one end of the spectrum: it is basically a Mealy machine, which is a
highly abstract notion of computation, consisting only of state, inputs and outputs [24]. The model and
its proofs are manageable, but making a realistic instantiation is tedious and requires complicated proofs.

We aim at the other side of the spectrum by having a generic model that is rich in detail. As a result,
instantiating the model with, e.g., a model of PikeOS can be done easily. To ensure maintainability of
the theorems and proofs, we have applied a highly modularized theorem proving technique.

Figure 1 shows an overview. The initial module “Kernel” is close to a Mealy machine, but has several
facets added, including interrupts, context switches and control. New modules are added in such a way
that each new module basically inserts an adjective before “Kernel”. The use of modules allows us to
prove, e.g., a separation theorem in module “Separation Kernel” and subsequently to reuse this theorem
later on when details on control or interrupts are added.

The second module adds a notion of separation, yielding a module of a Separation Kernel (SK). A
security policy is added that dictates which domains may flow information to each other. Local proof

EURO-MILS D31.1 Page 2 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

Figure 1: Overview of CISK modular structure

obligations are added from which a global theorem of noninterference is proven. This global theorem is
the unwinding of the local proof obligations.

In the third module calls to the kernel are no longer considered atomic, yielding an Interruptible
Separation Kernel (ISK). In this model, one call to the kernel is represented by an action sequence.
Consider, for example, an IPC call (for: Inter Process Communication). From the point of view of
the programmer this is one kernel call. From the point of view of the kernel it is an action sequence
consisting of three stages IPC PREP, IPC WAIT, and IPC SEND. During the PREP stage, it is checked
whether the IPC is allowed by the security policy. The WAIT stage is entered if a thread needs to wait
for its communication partner. The SEND stage is data transmission. After each stage, an interrupt may
occur that switches the current context. A consequence of allowing interruptible action sequences is that
it is no longer the case that any execution, i.e., any combination of atomic kernel actions, is realistic. We
formulate a definition of realistic execution and weaken the proof obligations of the model to apply only
to realistic executions.

The final module provides an interpretation of control that allows atomic kernel actions to be aborted
or delayed. Additional proof obligations are required to ensure that noninterference is still provided.
This yields a Controlled Interruptible Separation Kernel (CISK). When sequences of kernel actions are
aborted, error codes can be transmitted to other domains. Revisiting our IPC example, after the PREP
stage the kernel can decide to abort the action. The IPC action sequence will not be continued and
error codes may be sent out. At the WAIT stage, the kernel can delay the action sequence until the
communication partner of the IPC call is ready to receive.

In Section 3 we introduce a theory of intransitive non-interference for separation kernels with con-
trol, based on [31]. We show that it can be instantiated for a simple API consisting of IPC and events
(Section 4). The rest of this section gives some auxiliary theories used for Section 3.

2 Preliminaries

2.1 Binders for the option type
theory Option-Binders
imports Option

begin

The following functions are used as binders in the theorems that are proven. At all times, when a

EURO-MILS D31.1 Page 3 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

result is None, the theorem becomes vacuously true. The expression “m⇀ α” means “First compute m,
if it is None then return True, otherwise pass the result to α”. B2 is a short hand for sequentially doing
two independent computations. The following syntax is associated to B2: “m1∣∣m2 ⇀ α” represents
“First compute m1 and m2, if one of them is None then return True, otherwise pass the result to α”.

definition B ∶∶ ′a option⇒ (′a⇒ bool)⇒ bool (infixl ⇀ 65)
where B m α ≡ case m of None⇒ True ∣ (Some a)⇒ α a

definition B2 ∶∶ ′a option⇒ ′a option⇒ (′a⇒ ′a⇒ bool)⇒ bool
where B2 m1 m2 α ≡ m1 ⇀ (λ a . m2 ⇀ (λ b . α a b))

syntax B2 ∶∶ [′a option, ′a option, (′a⇒ ′a⇒ bool)] => bool ((- ∥ - ⇀ -) [0, 0, 10] 10)

Some rewriting rules for the binders

lemma rewrite-B2-to-cases[simp]∶
shows B2 s t f = (case s of None⇒ True ∣ (Some s1)⇒ (case t of None⇒ True ∣ (Some t1)⇒ f s1 t1))

using assms unfolding B2-def B-def by(cases s,cases t,simp+)
lemma rewrite-B-None[simp]∶

shows None⇀ α = True
unfolding B-def by(auto)
lemma rewrite-B-m-True[simp]∶

shows m ⇀ (λ a . True) = True
unfolding B-def by(cases m,simp+)
lemma rewrite-B2-cases∶
shows (case a of None⇒ True ∣ (Some s)⇒ (case b of None⇒ True ∣ (Some t)⇒ f s t))

= (∀ s t . a = (Some s) ∧ b = (Some t) Ð→ f s t)
by(cases a,simp,cases b,simp+)

definition strict-equal ∶∶ ′a option⇒ ′a⇒ bool
where strict-equal m a ≡ case m of None⇒ False ∣ (Some a ′)⇒ a ′ = a

end

2.2 Theorems on lists
theory List-Theorems
imports List

begin

definition lastn ∶∶ nat⇒ ′a list⇒ ′a list
where lastn n x = drop ((length x) − n) x

definition is-sub-seq ∶∶ ′a⇒ ′a⇒ ′a list⇒ bool
where is-sub-seq a b x ≡ ∃ n . Suc n < length x ∧ x!n = a ∧ x!(Suc n) = b

definition prefixes ∶∶ ′a list set⇒ ′a list set
where prefixes s ≡ {x . ∃ n y . n > 0 ∧ y ∈ s ∧ take n y = x}

lemma drop-one[simp]∶
shows drop (Suc 0) x = tl x by(induct x,auto)

lemma length-ge-one∶
shows x /= [] Ð→ length x ≥ 1 by(induct x,auto)

lemma take-but-one[simp]∶
shows x /= [] Ð→ lastn ((length x) − 1) x = tl x unfolding lastn-def
using length-ge-one[where x=x] by auto

lemma Suc-m-minus-n[simp]∶
shows m ≥ n Ð→ Suc m − n = Suc (m − n) by auto

EURO-MILS D31.1 Page 4 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

lemma lastn-one-less∶
shows n > 0 ∧ n ≤ length x ∧ lastn n x = (a#y) Ð→ lastn (n − 1) x = y unfolding lastn-def
using drop-Suc[where n=length x − n and xs=x] drop-tl[where n=length x − n and xs=x]
by(auto)

lemma list-sub-implies-member∶
shows ∀ a x . set (a#x) ⊆ Z Ð→ a ∈ Z by auto

lemma subset-smaller-list∶
shows ∀ a x . set (a#x) ⊆ Z Ð→ set x ⊆ Z by auto

lemma second-elt-is-hd-tl∶
shows tl x = (a # x ′) Ð→ a = x ! 1
by (cases x,auto)

lemma length-ge-2-implies-tl-not-empty∶
shows length x ≥ 2 Ð→ tl x /= []
by (cases x,auto)

lemma length-lt-2-implies-tl-empty∶
shows length x < 2 Ð→ tl x = []
by (cases x,auto)

lemma first-second-is-sub-seq∶
shows length x ≥ 2Ô⇒ is-sub-seq (hd x) (x!1) x

proof−
assume length x ≥ 2
hence 1∶ (Suc 0) < length x by auto
hence x!0 = hd x by(cases x,auto)
from this 1 show is-sub-seq (hd x) (x!1) x unfolding is-sub-seq-def by auto

qed
lemma hd-drop-is-nth∶

shows n < length xÔ⇒ hd (drop n x) = x!n
proof(induct x arbitrary∶ n)
case Nil

thus ?case by simp
next
case (Cons a x)
{

have hd (drop n (a # x)) = (a # x) ! n
proof(cases n)
case 0

thus ?thesis by simp
next
case (Suc m)

from Suc Cons show ?thesis by auto
qed
}
thus ?case by auto
qed

lemma def-of-hd∶
shows y = a # x Ð→ hd y = a by simp

lemma def-of-tl∶
shows y = a # x Ð→ tl y = x by simp

lemma drop-yields-results-implies-nbound∶
shows drop n x /= [] Ð→ n < length x

by(induct x,auto)
lemma hd-take[simp]∶
shows n > 0Ô⇒ hd (take n x) = hd x

by(cases x,simp,cases n, auto)
lemma consecutive-is-sub-seq∶

shows a # (b # x) = lastn n yÔ⇒ is-sub-seq a b y

EURO-MILS D31.1 Page 5 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

proof−
assume 1∶ a # (b # x) = lastn n y
from 1 drop-Suc[where n=(length y) − n and xs=y]

drop-tl[where n=(length y) − n and xs=y]
def-of-tl[where y=lastn n y and a=a and x =b#x]
drop-yields-results-implies-nbound[where n=Suc (length y − n) and x=y]

have 3∶ Suc (length y − n) < length y unfolding lastn-def by auto
from 3 1 hd-drop-is-nth[where n=(length y) − n and x=y] def-of-hd[where y=drop (length y − n) y and x=b#x

and a=a]
have 4∶ y!(length y − n) = a unfolding lastn-def by auto

from 3 1 hd-drop-is-nth[where n=Suc ((length y) − n) and x=y] def-of-hd[where y=drop (Suc (length y − n))
y and x=x and a=b]

drop-Suc[where n=(length y) − n and xs=y]
drop-tl[where n=(length y) − n and xs=y]
def-of-tl[where y=lastn n y and a=a and x =b#x]

have 5∶ y!Suc (length y − n) = b unfolding lastn-def by auto
from 3 4 5 show ?thesis
unfolding is-sub-seq-def by auto

qed

lemma sub-seq-in-prefixes∶
assumes ∃ y ∈ prefixes X. is-sub-seq a a ′ y
shows ∃ y ∈ X. is-sub-seq a a ′ y

proof−
from assms obtain y where y∶ y ∈ prefixes X ∧ is-sub-seq a a ′ y by auto
then obtain n x where x∶ n > 0 ∧ x ∈ X ∧ take n x = y

unfolding prefixes-def by auto
from y obtain i where sub-seq-index∶ Suc i < length y ∧ y ! i = a ∧ y ! Suc i = a ′

unfolding is-sub-seq-def by auto
from sub-seq-index x have is-sub-seq a a ′ x

unfolding is-sub-seq-def using nth-take by auto
from this x show ?thesis by metis

qed

lemma set-tl-is-subset∶
shows set (tl x) ⊆ set x by(induct x,auto)
lemma x-is-hd-snd-tl∶
shows length x ≥ 2 Ð→ x = (hd x) # x!1 # tl(tl x)
proof(induct x)
case Nil

show ?case by auto
case (Cons a xs)
show ?case by(induct xs,auto)

qed

lemma tl-x-not-x∶
shows x /= [] Ð→ tl x /= x by(induct x,auto)
lemma tl-hd-x-not-tl-x∶
shows x /= [] ∧ hd x /= [] Ð→ tl (hd x) # tl x /= x using tl-x-not-x by(induct x,simp,auto)

end

3 A generic model for separation kernels

This section defines a detailed generic model of separation kernels called CISK (Controlled Interruptible Separa-
tion Kernel). It contains a generic functional model of the behaviour of a separation kernel as a transition system,

EURO-MILS D31.1 Page 6 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

definitions of the security property and proofs that the functional model satisfies security properties. It is based on
Rushby’s approach [25] for noninterference. For an explanation of the model, its structure and an overview of the
proofs, we refer to the document entitled “A New Theory of Intransitive Noninterference for Separation Kernels
with Control” [31].
The structure of the model is based on locales and refinement:

• locale “Kernel” defines a highly generic model for a kernel, with execution semantics. It defines a state
transition system with some extensions to the one used in [25]. The transition system defined here stores
the currently active domain in the state, and has transitions for explicit context switches and interrupts and
provides a notion of control. As each operation of the system will be split into atomic actions in our model,
only certain sequences of actions will correspond to a run on a real system. Therefore, the function run,
which applies an execution on a state and computes the resulting new state, is partial and defined for realistic
traces only. Later, but not in this locale, we will define a predicate to distinguish realistic traces from other
traces. Security properties are also not part of this locale, but will be introduced in the locales to be described
next.

• locale “Separation Kernel” extends ”Kernel” with constraints concerning non-interference. The theorem is
only sensical for realistic traces; for unrealistic trace it will hold vacuously.

• locale “Interruptible Separation Kernel” refines “Separation Kernel” with interruptible action sequences. It
defines function “realistic trace” based on these action sequences. Therefore, we can formulate a total run
function.

• locale “Controlled Interruptible Separation Kernel” refines “Interruptible Separation Kernel” with abortable
action sequences. It refines function “control” which now uses a generic predicate “aborting” and a generic
function “set error code” to manage aborting of action sequences.

3.1 K (Kernel)
theory K
imports Main List Set Transitive-Closure List-Theorems Option-Binders

begin

The model makes use of the following types:

’state t A state contains information about the resources of the system, as well as which domain is
currently active. We decided that a state does not need to include a program stack, as in this model
the actions that are executed are modelled separately.

’dom t A domain is an entity executing actions and making calls to the kernel. This type represents the
names of all domains. Later on, we define security policies in terms of domains.

’action t Actions of type ’action t represent atomic instructions that are executed by the kernel. As
kernel actions are assumed to be atomic, we assume that after each kernel action an interrupt point
can occur.

’action t execution An execution of some domain is the code or the program that is executed by the
domain. One call from a domain to the kernel will typically trigger a succession of one or more
kernel actions. Therefore, an execution is represented as a list of sequences of kernel actions.
Non-kernel actions are not take into account.

’output t Given the current state and an action an output can be computed deterministically.

time t Time is modelled using natural numbers. Each atomic kernel action can be executed within one
time unit.

type-synonym (′action-t) execution = ′action-t list list
type-synonym time-t = nat

EURO-MILS D31.1 Page 7 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

Function kstep (for kernel step) computes the next state based on the current state s and a given action
a. It may assume that it makes sense to perform this action, i.e., that any precondition that is necessary for
execution of action a in state s is met. If not, it may return any result. This precondition is represented by
generic predicate kprecondition (for kernel precondition). Only realistic traces are considered. Predicate
realistic execution decides whether a given execution is realistic.

Function current returns given the state the domain that is currently executing actions. The model
assumes a single-core setting, i.e., at all times only one domain is active. Interrupt behavior is modelled
using functions interrupt and cswitch (for context switch) that dictate respectively when interrupts occur
and how interrupts occur. Interrupts are solely time-based, meaning that there is an at beforehand fixed
schedule dictating which domain is active at which time.

Finally, we add function control. This function represents control of the kernel over the execution
as performed by the domains. Given the current state s, the currently active domain d and the execution
α of that domain, it returns three objects. First, it returns the next action that domain d will perform.
Commonly, this is the next action in execution α. It may also return None, indicating that no action is
done. Secondly, it returns the updated execution. When executing action a, typically, this action will be
removed from the current execution (i.e., updating the program stack). Thirdly, it can update the state to
set, e.g., error codes.

locale Kernel =
fixes kstep ∶∶ ′state-t⇒ ′action-t⇒ ′state-t

and output-f ∶∶ ′state-t⇒ ′action-t⇒ ′output-t
and s0 ∶∶ ′state-t
and current ∶∶ ′state-t => ′dom-t
and cswitch ∶∶ time-t⇒ ′state-t⇒ ′state-t
and interrupt ∶∶ time-t⇒ bool
and kprecondition ∶∶ ′state-t⇒ ′action-t⇒ bool
and realistic-execution ∶∶ ′action-t execution⇒ bool
and control ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t execution⇒

((′action-t option) × ′action-t execution × ′state-t)
and kinvolved ∶∶ ′action-t⇒ ′dom-t set

begin

3.1.1 Execution semantics

Short hand notations for using function control.

definition next-action∶∶ ′state-t⇒ (′dom-t⇒ ′action-t execution)⇒ ′action-t option
where next-action s execs = fst (control s (current s) (execs (current s)))
definition next-execs∶∶ ′state-t⇒ (′dom-t⇒ ′action-t execution)⇒ (′dom-t⇒ ′action-t execution)
where next-execs s execs = (fun-upd execs (current s) (fst (snd (control s (current s) (execs (current s))))))
definition next-state∶∶ ′state-t⇒ (′dom-t⇒ ′action-t execution)⇒ ′state-t
where next-state s execs = snd (snd (control s (current s) (execs (current s))))

A thread is empty iff either it has no further action sequences to execute, or when the current action
sequence is finished and there are no further action sequences to execute.

abbreviation thread-empty∶∶ ′action-t execution⇒ bool
where thread-empty exec ≡ exec = [] ∨ exec = [[]]

Wrappers for function kstep and kprecondition that deal with the case where the given action is None.

definition step where step s oa ≡ case oa of None⇒ s ∣ (Some a)⇒ kstep s a
definition precondition ∶∶ ′state-t⇒ ′action-t option⇒ bool
where precondition s a ≡ a ⇀ kprecondition s
definition involved
where involved oa ≡ case oa of None⇒ {} ∣ (Some a)⇒ kinvolved a

Execution semantics are defined as follows: a run consists of consecutively running sequences of
actions. These sequences are interruptable. Run first checks whether an interrupt occurs. When this

EURO-MILS D31.1 Page 8 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

happens, function cswitch may switch the context. Otherwise, function control is used to determine the
next action a, which also yields a new state s′. Action a is executed by executing (step s′ a). The current
execution of the current domain is updated.

Note that run is a partial function, i.e., it computes results only when at all times the preconditions
hold. Such runs are the realistic ones. For other runs, we do not need to – and cannot – prove security.
All the theorems are formulated in such a way that they hold vacuously for unrealistic runs.

function run ∶∶ time-t⇒ ′state-t option⇒ (′dom-t⇒ ′action-t execution)⇒ ′state-t option
where run 0 s execs = s
∣ run (Suc n) None execs = None
∣ interrupt (Suc n)Ô⇒ run (Suc n) (Some s) execs = run n (Some (cswitch (Suc n) s)) execs
∣ ¬interrupt (Suc n)Ô⇒ thread-empty(execs (current s))Ô⇒ run (Suc n) (Some s) execs = run n (Some s) execs
∣ ¬interrupt (Suc n)Ô⇒ ¬thread-empty(execs (current s))Ô⇒ ¬precondition (next-state s execs) (next-action s
execs)Ô⇒ run (Suc n) (Some s) execs = None
∣ ¬interrupt (Suc n)Ô⇒ ¬thread-empty(execs (current s))Ô⇒ precondition (next-state s execs) (next-action s
execs)Ô⇒

run (Suc n) (Some s) execs = run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s
execs)
using not0-implies-Suc by (metis option.exhaust prod-cases3,auto)
termination by lexicographic-order
end

end

3.2 SK (Separation Kernel)
theory SK
imports K

begin

Locale Kernel is now refined to a generic model of a separation kernel. The security policy is repre-
sented using function ia. Function vpeq is adopted from Rushby and is an equivalence relation represet-
ing whether two states are equivalent from the point of view of the given domain.

We assume constraints similar to Rushby, i.e., weak step consistency, locally respects, and output
consistency. Additional assumptions are:

Step Atomicity Each atomic kernel step can be executed within one time slot. Therefore, the domain
that is currently active does not change by executing one action.

Time-based Interrupts As interrupts occur according to a prefixed time-based schedule, the domain
that is active after a call of switch depends on the currently active domain only (cswitch consistency).
Also, cswitch can only change which domain is currently active (cswitch consistency).

Control Consistency States that are equivalent yield the same control. That is, the next action and the
updated execution depend on the currently active domain only (next action consistent, next execs consistent),
the state as updated by the control function remains in vpeq (next state consistent, locally respects next state).
Finally, function control cannot change which domain is active (current next state).

definition actions-in-execution∶∶ ′action-t execution⇒ ′action-t set
where actions-in-execution exec ≡ { a . ∃ aseq ∈ set exec . a ∈ set aseq }

locale Separation-Kernel = Kernel kstep output-f s0 current cswitch interrupt kprecondition realistic-execution
control kinvolved

for kstep ∶∶ ′state-t⇒ ′action-t⇒ ′state-t
and output-f ∶∶ ′state-t⇒ ′action-t⇒ ′output-t

EURO-MILS D31.1 Page 9 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

and s0 ∶∶ ′state-t
and current ∶∶ ′state-t => ′dom-t — Returns the currently active domain
and cswitch ∶∶ time-t⇒ ′state-t⇒ ′state-t — Switches the current domain
and interrupt ∶∶ time-t⇒ bool — Returns t iff an interrupt occurs in the given state at the given time
and kprecondition ∶∶ ′state-t ⇒ ′action-t ⇒ bool — Returns t if an precondition holds that relates the current

action to the state
and realistic-execution ∶∶ ′action-t execution⇒ bool — In this locale, this function is completely unconstrained.
and control ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t execution⇒ ((′action-t option) × ′action-t execution × ′state-t)
and kinvolved ∶∶ ′action-t⇒ ′dom-t set
+

fixes ifp ∶∶ ′dom-t⇒ ′dom-t⇒ bool
and vpeq ∶∶ ′dom-t⇒ ′state-t⇒ ′state-t⇒ bool

assumes vpeq-transitive∶ ∀ a b c u. (vpeq u a b ∧ vpeq u b c) Ð→ vpeq u a c
and vpeq-symmetric∶ ∀ a b u. vpeq u a b Ð→ vpeq u b a
and vpeq-reflexive∶ ∀ a u. vpeq u a a
and ifp-reflexive∶ ∀ u . ifp u u
and weakly-step-consistent∶ ∀ s t u a. vpeq u s t ∧ vpeq (current s) s t ∧ kprecondition s a ∧ kprecondition t a

∧ current s = current t Ð→ vpeq u (kstep s a) (kstep t a)
and locally-respects∶ ∀ a s u. ¬ifp (current s) u ∧ kprecondition s a Ð→ vpeq u s (kstep s a)
and output-consistent∶ ∀ a s t. vpeq (current s) s t ∧ current s = current t Ð→ (output-f s a) = (output-f t a)
and step-atomicity∶ ∀ s a . current (kstep s a) = current s
and cswitch-independent-of-state∶ ∀ n s t . current s = current t Ð→ current (cswitch n s) = current (cswitch n

t)
and cswitch-consistency∶ ∀ u s t n . vpeq u s t Ð→ vpeq u (cswitch n s) (cswitch n t)
and next-action-consistent∶ ∀ s t execs . vpeq (current s) s t ∧ (∀ d ∈ involved (next-action s execs) . vpeq d s

t) ∧ current s = current t Ð→ next-action s execs = next-action t execs
and next-execs-consistent∶ ∀ s t execs . vpeq (current s) s t ∧ (∀ d ∈ involved (next-action s execs) . vpeq d s

t) ∧ current s = current t Ð→ fst (snd (control s (current s) (execs (current s)))) = fst (snd (control t (current s)
(execs (current s))))

and next-state-consistent∶ ∀ s t u execs . vpeq (current s) s t ∧ vpeq u s t ∧ current s = current t Ð→ vpeq u
(next-state s execs) (next-state t execs)

and current-next-state∶ ∀ s execs . current (next-state s execs) = current s
and locally-respects-next-state∶ ∀ s u execs. ¬ifp (current s) u Ð→ vpeq u s (next-state s execs)
and involved-ifp∶ ∀ s a . ∀ d ∈ (involved a) . kprecondition s (the a) Ð→ ifp d (current s)
and next-action-from-execs∶ ∀ s execs . next-action s execs ⇀ (λ a . a ∈ actions-in-execution (execs (current

s)))
and next-execs-subset∶ ∀ s execs u . actions-in-execution (next-execs s execs u) ⊆ actions-in-execution (execs u)

begin

Note that there are no proof obligations on function “interrupt”. Its typing enforces the assumptions
that switching is based on time and not on state. This assumption is sufficient for these proofs, i.e., no
further assumptions are required.

3.2.1 Security for non-interfering domains

We define security for domains that are completely non-interfering. That is, for all domains u and v
such that v may not interfere in any way with domain u, we prove that the behavior of domain u is
independent of the actions performed by v. In other words, the output of domain u in some run is at all
times equivalent to the output of domain u when the actions of domain v are replaced by some other set
actions.

A domain is unrelated to u if and only if the security policy dictates that there is no path from the
domain to u.

abbreviation unrelated ∶∶ ′dom-t⇒ ′dom-t⇒ bool
where unrelated d u ≡ ¬ifpˆ∗∗ d u

EURO-MILS D31.1 Page 10 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

To formulate the new theorem to prove, we redefine purging: all domains that may not influence
domain u are replaced by arbitrary action sequences.

definition purge ∶∶
(′dom-t⇒ ′action-t execution)⇒ ′dom-t⇒ (′dom-t⇒ ′action-t execution)

where purge execs u ≡ λ d . (if unrelated d u then
(SOME alpha . realistic-execution alpha)

else execs d)

A normal run from initial state s0 ending in state s f is equivalent to a run purged for domain
(currents f).

definition NI-unrelated where NI-unrelated
≡ ∀ execs a n . run n (Some s0) execs ⇀

(λ s-f . run n (Some s0) (purge execs (current s-f)) ⇀
(λ s-f2 . output-f s-f a = output-f s-f2 a ∧ current s-f = current s-f2))

The following properties are proven inductive over states s and t:

1. Invariably, states s and t are equivalent for any domain v that may influence the purged domain
u. This is more general than proving that “vpeq u s t” is inductive. The reason we need to prove
equivalence over all domains v is so that we can use weak step consistency.

2. Invariably, states s and t have the same active domain.

abbreviation equivalent-states ∶∶ ′state-t option ⇒ ′state-t option⇒ ′dom-t⇒ bool
where equivalent-states s t u ≡ s ∥ t ⇀ (λ s t . (∀ v . ifpˆ∗∗ v u Ð→ vpeq v s t) ∧ current s = current t)

Rushby’s view partitioning is redefined. Two states that are initially u-equivalent are u-equivalent
after performing respectively a realistic run and a realistic purged run.

definition view-partitioned∶∶bool where view-partitioned
≡ ∀ execs ms mt n u . equivalent-states ms mt u Ð→

(run n ms execs ∥
run n mt (purge execs u) ⇀
(λ rs rt . vpeq u rs rt ∧ current rs = current rt))

We formulate a version of predicate view partitioned that is on one hand more general, but on the
other hand easier to prove inductive over function run. Instead of reasoning over execs and (purge execs
u), we reason over any two executions execs1 and execs2 for which the following relation holds:

definition purged-relation ∶∶ ′dom-t⇒ (′dom-t⇒ ′action-t execution)⇒ (′dom-t⇒ ′action-t execution)⇒ bool
where purged-relation u execs1 execs2 ≡ ∀ d . ifpˆ∗∗ d u Ð→ execs1 d = execs2 d

The inductive version of view partitioning says that runs on two states that are u-equivalent and on
two executions that are purged related yield u-equivalent states.

definition view-partitioned-ind∶∶bool where view-partitioned-ind
≡ ∀ execs1 execs2 s t n u . equivalent-states s t u ∧ purged-relation u execs1 execs2Ð→ equivalent-states (run n

s execs1) (run n t execs2) u

A proof that when state t performs a step but state s not, the states remain equivalent for any domain
v that may interfere with u.

lemma vpeq-s-nt∶
assumes prec-t∶ precondition (next-state t execs2) (next-action t execs2)
assumes not-ifp-curr-u∶ ¬ ifpˆ∗∗ (current t) u
assumes vpeq-s-t∶ ∀ v . ifpˆ∗∗ v u Ð→ vpeq v s t
shows (∀ v . ifpˆ∗∗ v u Ð→ vpeq v s (step (next-state t execs2) (next-action t execs2)))

proof−
{

fix v

EURO-MILS D31.1 Page 11 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

assume ifp-v-u∶ ifpˆ∗∗ v u

from ifp-v-u not-ifp-curr-u have unrelated∶ ¬ifpˆ∗∗ (current t) v using rtranclp-trans by metis
from this current-next-state[THEN spec,THEN spec,where x1=t]

locally-respects[THEN spec,THEN spec,THEN spec,where x1=next-state t execs2] vpeq-reflexive
prec-t have vpeq v (next-state t execs2) (step (next-state t execs2) (next-action t execs2))
unfolding step-def precondition-def B-def
by (cases next-action t execs2,auto)

from unrelated this locally-respects-next-state vpeq-transitive have vpeq v t (step (next-state t execs2) (next-action
t execs2)) by blast

from this and ifp-v-u and vpeq-s-t and vpeq-symmetric and vpeq-transitive have vpeq v s (step (next-state t
execs2) (next-action t execs2)) by metis
}

thus ?thesis by auto
qed

A proof that when state s performs a step but state t not, the states remain equivalent for any domain
v that may interfere with u.

lemma vpeq-ns-t∶
assumes prec-s∶ precondition (next-state s execs) (next-action s execs)
assumes not-ifp-curr-u∶ ¬ ifpˆ∗∗ (current s) u
assumes vpeq-s-t∶ ∀ v . ifpˆ∗∗ v u Ð→ vpeq v s t
shows ∀ v . ifpˆ∗∗ v u Ð→ vpeq v (step (next-state s execs) (next-action s execs)) t

proof−
{

fix v
assume ifp-v-u∶ ifpˆ∗∗ v u

from ifp-v-u and not-ifp-curr-u have unrelated∶ ¬ifpˆ∗∗ (current s) v using rtranclp-trans by metis
from this current-next-state[THEN spec,THEN spec,where x1=s] vpeq-reflexive

unrelated locally-respects[THEN spec,THEN spec,THEN spec,where x1=next-state s execs and x=v and
x2=the (next-action s execs)] prec-s

have vpeq v (next-state s execs) (step (next-state s execs) (next-action s execs))
unfolding step-def precondition-def B-def
by (cases next-action s execs,auto)

from unrelated this locally-respects-next-state vpeq-transitive have vpeq v s (step (next-state s execs) (next-action
s execs)) by blast

from this and ifp-v-u and vpeq-s-t and vpeq-symmetric and vpeq-transitive have vpeq v (step (next-state s
execs) (next-action s execs)) t by metis
}

thus ?thesis by auto
qed

A proof that when both states s and t perform a step, the states remain equivalent for any domain v
that may interfere with u. It assumes that the current domain can interact with u (the domain for which
is purged).

lemma vpeq-ns-nt-ifp-u∶
assumes vpeq-s-t∶ ∀ v . ifpˆ∗∗ v u Ð→ vpeq v s t ′

and current-s-t∶ current s = current t ′

shows precondition (next-state s execs) a ∧ precondition (next-state t ′ execs) a Ô⇒ (ifpˆ∗∗ (current s) u Ô⇒
(∀ v . ifpˆ∗∗ v u Ð→ vpeq v (step (next-state s execs) a) (step (next-state t ′ execs) a)))
proof−

fix a
assume precs∶ precondition (next-state s execs) a ∧ precondition (next-state t ′ execs) a
assume ifp-curr∶ ifpˆ∗∗ (current s) u
from vpeq-s-t have vpeq-curr-s-t∶ ifpˆ∗∗ (current s) u Ð→ vpeq (current s) s t ′ by auto
from ifp-curr precs

EURO-MILS D31.1 Page 12 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

next-state-consistent[THEN spec,THEN spec,where x1=s and x=t ′] vpeq-curr-s-t vpeq-s-t
current-next-state current-s-t weakly-step-consistent[THEN spec,THEN spec,THEN spec,THEN spec,where

x3=next-state s execs and x2=next-state t ′ execs and x=the a]
show ∀ v . ifpˆ∗∗ v u Ð→ vpeq v (step (next-state s execs) a) (step (next-state t ′ execs) a)

unfolding step-def precondition-def B-def
by (cases a,auto)

qed

A proof that when both states s and t perform a step, the states remain equivalent for any domain
v that may interfere with u. It assumes that the current domain cannot interact with u (the domain for
which is purged).

lemma vpeq-ns-nt-not-ifp-u∶
assumes purged-a-a2∶ purged-relation u execs execs2

and prec-s∶ precondition (next-state s execs) (next-action s execs)
and current-s-t∶ current s = current t ′

and vpeq-s-t∶ ∀ v . ifpˆ∗∗ v u Ð→ vpeq v s t ′

shows ¬ifpˆ∗∗ (current s) u ∧ precondition (next-state t ′ execs2) (next-action t ′ execs2) Ð→ (∀ v . ifpˆ∗∗ v u
Ð→ vpeq v (step (next-state s execs) (next-action s execs)) (step (next-state t ′ execs2) (next-action t ′ execs2)))
proof−
{

assume not-ifp∶ ¬ifpˆ∗∗ (current s) u
assume prec-t∶ precondition (next-state t ′ execs2) (next-action t ′ execs2)
fix a a ′ v
assume ifp-v-u∶ ifpˆ∗∗ v u
from not-ifp and purged-a-a2 have ¬ifpˆ∗∗ (current s) u unfolding purged-relation-def by auto
from this and ifp-v-u have not-ifp-curr-v∶ ¬ifpˆ∗∗ (current s) v using rtranclp-trans by metis
from this current-next-state[THEN spec,THEN spec,where x1=s and x=execs] prec-s vpeq-reflexive

locally-respects[THEN spec,THEN spec,THEN spec,where x1=next-state s execs and x2=the (next-action s
execs) and x=v]

have vpeq v (next-state s execs) (step (next-state s execs) (next-action s execs))
unfolding step-def precondition-def B-def
by (cases next-action s execs,auto)

from not-ifp-curr-v this locally-respects-next-state vpeq-transitive
have vpeq-s-ns∶ vpeq v s (step (next-state s execs) (next-action s execs))
by blast

from not-ifp-curr-v current-s-t current-next-state[THEN spec,THEN spec,where x1=t ′ and x=execs2] prec-t
locally-respects[THEN spec,THEN spec,where x=next-state t ′ execs2] vpeq-reflexive
have 0∶ vpeq v (next-state t ′ execs2) (step (next-state t ′ execs2) (next-action t ′ execs2))
unfolding step-def precondition-def B-def
by (cases next-action t ′ execs2,auto)

from not-ifp-curr-v current-s-t current-next-state have 1∶ ¬ifpˆ∗∗ (current t ′) v
using rtranclp-trans by auto

from 0 1 locally-respects-next-state vpeq-transitive
have vpeq-t-nt∶ vpeq v t ′ (step (next-state t ′ execs2) (next-action t ′ execs2))
by blast

from vpeq-s-ns and vpeq-t-nt and vpeq-s-t and ifp-v-u and vpeq-symmetric and vpeq-transitive
have vpeq-ns-nt∶ vpeq v (step (next-state s execs) (next-action s execs)) (step (next-state t ′ execs2) (next-action

t ′ execs2))
by blast

}
thus ?thesis by auto

qed

A run with a purged list of actions appears identical to a run without purging, when starting from two
states that appear identical.

lemma unwinding-implies-view-partitioned-ind∶
shows view-partitioned-ind

EURO-MILS D31.1 Page 13 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

proof−
{

fix execs execs2 s t n u
have equivalent-states s t u ∧ purged-relation u execs execs2 Ð→ equivalent-states (run n s execs) (run n t

execs2) u
proof (induct n s execs arbitrary∶ t u execs2 rule∶ run.induct)

case (1 s execs t u execs2)
show ?case by auto

next
case (2 n execs t u execs2)

show ?case by simp
next
case (3 n s execs t u execs2)
assume interrupt-s∶ interrupt (Suc n)
assume IH∶ (⋀t u execs2.

equivalent-states (Some (cswitch (Suc n) s)) t u ∧ purged-relation u execs execs2Ð→
equivalent-states (run n (Some (cswitch (Suc n) s)) execs) (run n t execs2) u)

{
fix t ′

assume t = Some t ′

fix rs
assume rs∶ run (Suc n) (Some s) execs = Some rs
fix rt
assume rt∶ run (Suc n) (Some t ′) execs2 = Some rt

assume vpeq-s-t∶ ∀ v . ifpˆ∗∗ v u Ð→ vpeq v s t ′

assume current-s-t∶ current s = current t ′

assume purged-a-a2∶ purged-relation u execs execs2

— The following terminology is used: states rs and rt (for: run-s and run-t) are the states after a run. States ns
and nt (for: next-s and next-t) are the states after one step.

— We prove two properties: the states rs and rt have equal active domains (current-rs-rt) and are vpeq for all
domains v that may influence u (vpeq-rs-rt). Both are proven using the IH. To use the IH, we have to prove that the
properties hold for the next step (in this case, a context switch). Statement current-ns-nt states that after one step
states ns and nt have the same active domain. Statement vpeq-ns-nt states that after one step states ns and nt are
vpeq for all domains v that may influence u (vpeq-rs-rt).

from current-s-t cswitch-independent-of-state
have current-ns-nt∶ current (cswitch (Suc n) s) = current (cswitch (Suc n) t ′) by blast

from cswitch-consistency vpeq-s-t
have vpeq-ns-nt∶ ∀ v . ifpˆ∗∗ v u Ð→ vpeq v (cswitch (Suc n) s) (cswitch (Suc n) t ′) by auto
from current-ns-nt vpeq-ns-nt interrupt-s vpeq-reflexive purged-a-a2 current-s-t IH[where u=u and t=Some

(cswitch (Suc n) t ′) and ?execs2.0=execs2]
have current-rs-rt∶ current rs = current rt using rs rt by(auto)
{

fix v
assume ia∶ ifpˆ∗∗ v u
from current-ns-nt vpeq-ns-nt ia interrupt-s vpeq-reflexive purged-a-a2 IH[where u=u and t=Some (cswitch

(Suc n) t ′) and ?execs2.0=execs2]
have vpeq-rs-rt∶ vpeq v rs rt using rs rt by(auto)
}
from current-rs-rt and this have equivalent-states (Some rs) (Some rt) u by auto
}
thus ?case by(simp add∶option.splits,cases t,simp+)
next
case (4 n execs s t u execs2)
assume not-interrupt∶ ¬interrupt (Suc n)
assume thread-empty-s∶ thread-empty(execs (current s))

EURO-MILS D31.1 Page 14 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

assume IH∶ (⋀t u execs2. equivalent-states (Some s) t u ∧ purged-relation u execs execs2Ð→ equivalent-states
(run n (Some s) execs) (run n t execs2) u)
{

fix t ′

assume t∶ t = Some t ′

fix rs
assume rs∶ run (Suc n) (Some s) execs = Some rs
fix rt
assume rt∶ run (Suc n) (Some t ′) execs2 = Some rt

assume vpeq-s-t∶ ∀ v . ifpˆ∗∗ v u Ð→ vpeq v s t ′

assume current-s-t∶ current s = current t ′

assume purged-a-a2∶ purged-relation u execs execs2

— The following terminology is used: states rs and rt (for: run-s and run-t) are the states after a run. States ns
and nt (for: next-s and next-t) are the states after one step.

— We prove two properties: the states rs and rt have equal active domains (current-rs-rt) and are vpeq for all
domains v that may influence u (vpeq-rs-rt). Both are proven using the IH. To use the IH, we have to prove that the
properties hold for the next step (in this case, nothing happens in s as the thread is empty). Statement current-ns-nt
states that after one step states ns and nt have the same active domain. Statement vpeq ns nt states that after one
step states ns and nt are vpeq for all domains v that may influence u (vpeq-rs-rt).

from ifp-reflexive and vpeq-s-t have vpeq-s-t-u∶ vpeq u s t ′ by auto
from thread-empty-s and purged-a-a2 and current-s-t have purged-a-na2∶ ¬ifpˆ∗∗ (current t ′) u Ð→

purged-relation u execs (next-execs t ′ execs2)
by(unfold next-execs-def ,unfold purged-relation-def ,auto)
from step-atomicity current-next-state current-s-t have current-s-nt∶ current s = current (step (next-state t ′

execs2) (next-action t ′ execs2))
unfolding step-def
by (cases next-action t ′ execs2,auto)

— The proof is by case distinction. If the current thread is empty in state t as well (case t-empty), then nothing
happens and the proof is trivial. Otherwise (case t-not-empty), since the current thread has different executions in
states s and t, we now show that it cannot influence u (statement not-ifp-curr-t). If in state t the precondition holds
(case t-prec), locally respects shows that the states remain vpeq. Otherwise, (case t-not-prec), everything holds
vacuously.

have current-rs-rt∶ current rs = current rt
proof (cases thread-empty(execs2 (current t ′)) rule ∶case-split[case-names t-empty t-not-empty])
case t-empty

from purged-a-a2 and vpeq-s-t and current-s-t IH[where t=Some t ′ and u=u and ?execs2.0=execs2]
have equivalent-states (run n (Some s) execs) (run n (Some t ′) execs2) u using rs rt by(auto)

from this not-interrupt t-empty thread-empty-s
show ?thesis using rs rt by(auto)

next
case t-not-empty

from t-not-empty current-next-state and vpeq-s-t-u and thread-empty-s and purged-a-a2 and current-s-t
have not-ifp-curr-t∶ ¬ifpˆ∗∗ (current (next-state t ′ execs2)) u unfolding purged-relation-def by auto

show ?thesis
proof (cases precondition (next-state t ′ execs2) (next-action t ′ execs2) rule ∶case-split[case-names t-prec

t-not-prec])
case t-prec

from locally-respects-next-state current-next-state t-prec not-ifp-curr-t vpeq-s-t locally-respects vpeq-s-nt
have vpeq-s-nt∶ (∀ v . ifpˆ∗∗ v uÐ→ vpeq v s (step (next-state t ′ execs2) (next-action t ′ execs2))) by auto

from vpeq-s-nt purged-a-na2 this current-s-nt not-ifp-curr-t current-next-state
IH[where t=Some (step (next-state t ′ execs2) (next-action t ′ execs2)) and u=u and ?execs2.0=next-execs

t ′ execs2]
have equivalent-states (run n (Some s) execs) (run n (Some (step (next-state t ′ execs2) (next-action t ′

EURO-MILS D31.1 Page 15 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

execs2))) (next-execs t ′ execs2)) u
using rs rt by auto

from t-not-empty t-prec vpeq-s-nt this thread-empty-s not-interrupt
show ?thesis using rs rt by auto

next
case t-not-prec

thus ?thesis using rt t-not-empty not-interrupt by(auto)
qed

qed
{

fix v
assume ia∶ ifpˆ∗∗ v u
have vpeq v rs rt
proof (cases thread-empty(execs2 (current t ′)) rule ∶case-split[case-names t-empty t-not-empty])

case t-empty
from purged-a-a2 and vpeq-s-t and current-s-t IH[where t=Some t ′ and u=u and ?execs2.0=execs2]

have equivalent-states (run n (Some s) execs) (run n (Some t ′) execs2) u using rs rt by(auto)
from ia this not-interrupt t-empty thread-empty-s

show ?thesis using rs rt by(auto)
next
case t-not-empty

show ?thesis
proof (cases precondition (next-state t ′ execs2) (next-action t ′ execs2) rule ∶case-split[case-names t-prec

t-not-prec])
case t-prec

from t-not-empty current-next-state and vpeq-s-t-u and thread-empty-s and purged-a-a2 and current-s-t
have not-ifp-curr-t∶ ¬ifpˆ∗∗ (current (next-state t ′ execs2)) u unfolding purged-relation-def
by auto

from t-prec current-next-state locally-respects-next-state this and vpeq-s-t and locally-respects and
vpeq-s-nt

have vpeq-s-nt∶ (∀ v . ifpˆ∗∗ v u Ð→ vpeq v s (step (next-state t ′ execs2) (next-action t ′ execs2))) by
auto

from purged-a-na2 this current-s-nt not-ifp-curr-t current-next-state
IH[where t=Some (step (next-state t ′ execs2) (next-action t ′ execs2)) and u=u and ?execs2.0=next-execs

t ′ execs2]
have equivalent-states (run n (Some s) execs) (run n (Some (step (next-state t ′ execs2) (next-action t ′

execs2))) (next-execs t ′ execs2)) u
using rs rt by(auto)

from ia t-not-empty t-prec vpeq-s-nt this thread-empty-s not-interrupt
show ?thesis using rs rt by auto

next
case t-not-prec

thus ?thesis using rt t-not-empty not-interrupt by(auto)
qed

qed
}
from current-rs-rt and this have equivalent-states (Some rs) (Some rt) u by auto
}
thus ?case by(simp add∶option.splits,cases t,simp+)
next
case (5 n execs s t u execs2)
assume not-interrupt∶ ¬interrupt (Suc n)
assume thread-not-empty-s∶ ¬thread-empty(execs (current s))
assume not-prec-s∶ ¬ precondition (next-state s execs) (next-action s execs)
— Whenever the precondition does not hold, the entire theorem flattens to True and everything holds vacuously.

hence run (Suc n) (Some s) execs = None using not-interrupt thread-not-empty-s by simp

EURO-MILS D31.1 Page 16 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

thus ?case by(simp add∶option.splits)
next
case (6 n execs s t u execs2)
assume not-interrupt∶ ¬interrupt (Suc n)
assume thread-not-empty-s∶ ¬thread-empty(execs (current s))
assume prec-s∶ precondition (next-state s execs) (next-action s execs)
assume IH∶ (⋀t u execs2.

equivalent-states (Some (step (next-state s execs) (next-action s execs))) t u ∧
purged-relation u (next-execs s execs) execs2Ð→
equivalent-states
(run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs))
(run n t execs2) u)

{
fix t ′

assume t∶ t = Some t ′

fix rs
assume rs∶ run (Suc n) (Some s) execs = Some rs
fix rt
assume rt∶ run (Suc n) (Some t ′) execs2 = Some rt

assume vpeq-s-t∶ ∀ v . ifpˆ∗∗ v u Ð→ vpeq v s t ′

assume current-s-t∶ current s = current t ′

assume purged-a-a2∶ purged-relation u execs execs2

— The following terminology is used: states rs and rt (for: run-s and run-t) are the states after a run. States ns
and nt (for: next-s and next-t) are the states after one step.

— We prove two properties: the states rs and rt have equal active domains (current-rs-rt) and are vpeq for all
domains v that may influence u (vpeq-rs-rt). Both are proven using the IH. To use the IH, we have to prove that the
properties hold for the next step (in this case, state s executes an action). Statement current-ns-nt states that after
one step states ns and nt have the same active domain. Statement vpeq-ns-nt states that after one step states ns and
nt are vpeq for all domains v that may influence u (vpeq-rs-rt).

— Some lemma’s used in the remainder of this case.
from ifp-reflexive and vpeq-s-t have vpeq-s-t-u∶ vpeq u s t ′ by auto
from step-atomicity and current-s-t current-next-state

have current-ns-nt∶ current (step (next-state s execs) (next-action s execs)) = current (step (next-state t ′

execs2) (next-action t ′ execs2))
unfolding step-def
by (cases next-action s execs,cases next-action t ′ execs2,simp,simp,cases next-action t ′ execs2,simp,simp)

from vpeq-s-t have vpeq-curr-s-t∶ ifpˆ∗∗ (current s) u Ð→ vpeq (current s) s t ′ by auto
from prec-s involved-ifp[THEN spec,THEN spec,where x1=next-state s execs and x=next-action s execs]

vpeq-s-t have vpeq-involved∶ ifpˆ∗∗ (current s) u Ð→ (∀ d ∈ involved (next-action s execs) . vpeq d s t ′)
using current-next-state
unfolding involved-def precondition-def B-def
by(cases next-action s execs,simp,auto,metis converse-rtranclp-into-rtranclp)

from current-s-t next-execs-consistent vpeq-curr-s-t vpeq-involved
have next-execs-t∶ ifpˆ∗∗ (current s) u Ð→ next-execs t ′ execs = next-execs s execs
unfolding next-execs-def
by(auto)

from current-s-t purged-a-a2 thread-not-empty-s next-action-consistent[THEN spec,THEN spec,where x1=s
and x=t ′] vpeq-curr-s-t vpeq-involved

have next-action-s-t∶ ifpˆ∗∗ (current s) u Ð→ next-action t ′ execs2 = next-action s execs
by(unfold next-action-def ,unfold purged-relation-def ,auto)

from purged-a-a2 current-s-t next-execs-consistent[THEN spec,THEN spec,THEN spec,where x2=s and x1=t ′

and x=execs]
vpeq-curr-s-t vpeq-involved

have purged-na-na2∶ purged-relation u (next-execs s execs) (next-execs t ′ execs2)

EURO-MILS D31.1 Page 17 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

unfolding next-execs-def purged-relation-def
by(auto)

from purged-a-a2 and purged-relation-def and thread-not-empty-s and current-s-t have thread-not-empty-t∶
ifpˆ∗∗ (current s) u Ð→ ¬thread-empty(execs2 (current t ′)) by auto

from step-atomicity current-s-t current-next-state have current-ns-t∶ current (step (next-state s execs) (next-action
s execs)) = current t ′

unfolding step-def
by (cases next-action s execs,auto)

from step-atomicity and current-s-t have current-s-nt∶ current s = current (step t ′ (next-action t ′ execs2))
unfolding step-def
by (cases next-action t ′ execs2,auto)

from purged-a-a2 have purged-na-a∶ ¬ifpˆ∗∗ (current s) u Ð→ purged-relation u (next-execs s execs) execs2
by(unfold next-execs-def ,unfold purged-relation-def ,auto)

— The proof is by case distinction. If the current domain can interact with u (case curr-ifp-u), then either in
state t the precondition holds (case t-prec) or not. If it holds, then lemma vpeq-ns-nt-ifp-u applies. Otherwise, the
proof is trivial as the theorem holds vacuously. If the domain cannot interact with u, (case curr-not-ifp-u), then
lemma vpeq-ns-nt-not-ifp-u applies.

have current-rs-rt∶ current rs = current rt
proof (cases ifpˆ∗∗ (current s) u rule ∶case-split[case-names curr-ifp-u curr-not-ifp-u])
case curr-ifp-u

show ?thesis
proof (cases precondition (next-state t ′ execs2) (next-action t ′ execs2) rule ∶case-split[case-names prec-t

prec-not-t])
case prec-t

have thread-not-empty-t∶ ¬thread-empty(execs2 (current t ′)) using thread-not-empty-t curr-ifp-u by auto
from

current-ns-nt next-execs-t next-action-s-t purged-a-a2
curr-ifp-u prec-t prec-s vpeq-ns-nt-ifp-u[where a=(next-action s execs)] vpeq-s-t current-s-t
have equivalent-states (Some (step (next-state s execs) (next-action s execs))) (Some (step (next-state t ′

execs2) (next-action t ′ execs2))) u
unfolding purged-relation-def next-state-def
by auto

from this
IH[where u=u and ?execs2.0=(next-execs t ′ execs2) and t=Some (step (next-state t ′ execs2) (next-action

t ′ execs2))]
current-ns-nt purged-na-na2

have equivalent-states (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs))
(run n (Some (step (next-state t ′ execs2) (next-action t ′ execs2))) (next-execs t ′ execs2)) u

by auto
from prec-t thread-not-empty-t prec-s and this and not-interrupt and thread-not-empty-s and next-action-s-t

show ?thesis using rs rt by auto
next
case prec-not-t

from curr-ifp-u prec-not-t thread-not-empty-t not-interrupt show ?thesis using rt by simp
qed

next
case curr-not-ifp-u

show ?thesis
proof (cases thread-empty(execs2 (current t ′)) rule ∶case-split[case-names t-empty t-not-empty])
case t-not-empty

show ?thesis
proof (cases precondition (next-state t ′ execs2) (next-action t ′ execs2) rule ∶case-split[case-names t-prec

t-not-prec])
case t-prec

from curr-not-ifp-u t-prec IH[where u=u and ?execs2.0=(next-execs t ′ execs2) and t=Some (step
(next-state t ′ execs2) (next-action t ′ execs2))]

EURO-MILS D31.1 Page 18 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

current-ns-nt next-execs-t purged-na-na2 vpeq-ns-nt-not-ifp-u current-s-t vpeq-s-t prec-s purged-a-a2
have equivalent-states (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s

execs))
(run n (Some (step (next-state t ′ execs2) (next-action t ′ execs2))) (next-execs t ′ execs2))

u by auto
from this t-prec curr-not-ifp-u t-not-empty prec-s not-interrupt thread-not-empty-s show ?thesis using rs

rt by auto
next
case t-not-prec

from t-not-prec t-not-empty not-interrupt show ?thesis using rt by simp
qed

next
case t-empty

from curr-not-ifp-u and prec-s and vpeq-s-t and locally-respects and vpeq-ns-t current-next-state
locally-respects-next-state

have vpeq-ns-t∶ (∀ v . ifpˆ∗∗ v u Ð→ vpeq v (step (next-state s execs) (next-action s execs)) t ′)
by blast

from curr-not-ifp-u IH[where t=Some t ′ and u=u and ?execs2.0=execs2] and current-ns-t and next-execs-t
and purged-na-a and vpeq-ns-t and this

have equivalent-states (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs))

(run n (Some t ′) execs2) u by auto
from this not-interrupt thread-not-empty-s t-empty prec-s show ?thesis using rs rt by auto

qed
qed
{

fix v
assume ia∶ ifpˆ∗∗ v u

have vpeq v rs rt
proof (cases ifpˆ∗∗ (current s) u rule ∶case-split[case-names curr-ifp-u curr-not-ifp-u])
case curr-ifp-u
show ?thesis
proof (cases precondition (next-state t ′ execs2) (next-action t ′ execs2) rule ∶case-split[case-names t-prec

t-not-prec])
case t-prec

have thread-not-empty-t∶ ¬thread-empty(execs2 (current t ′)) using thread-not-empty-t curr-ifp-u by auto
from

current-ns-nt next-execs-t next-action-s-t purged-a-a2
curr-ifp-u t-prec prec-s vpeq-ns-nt-ifp-u[where a=(next-action s execs)] vpeq-s-t current-s-t
have equivalent-states (Some (step (next-state s execs) (next-action s execs))) (Some (step (next-state t ′

execs2) (next-action t ′ execs2))) u
unfolding purged-relation-def next-state-def
by auto

from this
IH[where u=u and ?execs2.0=(next-execs t ′ execs2) and t=Some (step (next-state t ′ execs2) (next-action

t ′ execs2))]
current-ns-nt purged-na-na2

have equivalent-states (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s
execs))

(run n (Some (step (next-state t ′ execs2) (next-action t ′ execs2))) (next-execs t ′ execs2)) u
by auto

from ia curr-ifp-u t-prec thread-not-empty-t prec-s and this and not-interrupt and thread-not-empty-s
and next-action-s-t

show ?thesis using rs rt by auto
next
case t-not-prec

EURO-MILS D31.1 Page 19 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

from curr-ifp-u t-not-prec thread-not-empty-t not-interrupt show ?thesis using rt by simp
qed

next
case curr-not-ifp-u

show ?thesis
proof (cases thread-empty(execs2 (current t ′)) rule ∶case-split[case-names t-empty t-not-empty])
case t-not-empty

show ?thesis
proof (cases precondition (next-state t ′ execs2) (next-action t ′ execs2) rule ∶case-split[case-names t-prec

t-not-prec])
case t-prec

from curr-not-ifp-u t-prec IH[where u=u and ?execs2.0=(next-execs t ′ execs2) and t=Some (step
(next-state t ′ execs2) (next-action t ′ execs2))]

current-ns-nt next-execs-t purged-na-na2 vpeq-ns-nt-not-ifp-u current-s-t vpeq-s-t prec-s purged-a-a2
have equivalent-states (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s

execs))
(run n (Some (step (next-state t ′ execs2) (next-action t ′ execs2))) (next-execs t ′ execs2))

u by auto
from ia this t-prec curr-not-ifp-u t-not-empty prec-s not-interrupt thread-not-empty-s show ?thesis using

rs rt by auto
next
case t-not-prec

from t-not-prec t-not-empty not-interrupt show ?thesis using rt by simp
qed

next
case t-empty
from curr-not-ifp-u prec-s and vpeq-s-t and locally-respects and vpeq-ns-t current-next-state locally-respects-next-state

have vpeq-ns-t∶ (∀ v . ifpˆ∗∗ v u Ð→ vpeq v (step (next-state s execs) (next-action s execs)) t ′)
by blast

from curr-not-ifp-u IH[where t=Some t ′ and u=u and ?execs2.0=execs2] and current-ns-t and next-execs-t
and purged-na-a and vpeq-ns-t and this

have equivalent-states (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs))

(run n (Some t ′) execs2) u by auto
from ia this not-interrupt thread-not-empty-s t-empty prec-s show ?thesis using rs rt by auto

qed
qed
}
from current-rs-rt and this have equivalent-states (Some rs) (Some rt) u by auto
}
thus ?case by(simp add∶option.splits,cases t,simp+)

qed
}
thus ?thesis

unfolding view-partitioned-ind-def by auto
qed

From the previous lemma, we can prove that the system is view partitioned. The previous lemma
was inductive, this lemma just instantiates the previous lemma replacing s and t by the initial state.
lemma unwinding-implies-view-partitioned∶
shows view-partitioned
proof−
from assms unwinding-implies-view-partitioned-ind have view-partitioned-inductive∶ view-partitioned-ind

by blast
have purged-relation∶ ∀ u execs . purged-relation u execs (purge execs u)

by(unfold purged-relation-def , unfold purge-def , auto)
{

fix execs s t n u

EURO-MILS D31.1 Page 20 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

assume 1∶ equivalent-states s t u
from this view-partitioned-inductive purged-relation

have equivalent-states (run n s execs) (run n t (purge execs u)) u
unfolding view-partitioned-ind-def by auto

from this ifp-reflexive
have run n s execs ∥ run n t (purge execs u) ⇀ (λrs rt. vpeq u rs rt ∧ current rs = current rt)
using r-into-rtranclp unfolding B-def
by(cases run n s execs,simp,cases run n t (purge execs u),simp,auto)

}
thus ?thesis unfolding view-partitioned-def Let-def by auto
qed

Domains that many not interfere with each other, do not interfere with each other.

theorem unwinding-implies-NI-unrelated∶
shows NI-unrelated
proof−
{

fix execs a n
from assms unwinding-implies-view-partitioned

have vp∶ view-partitioned by blast
from vp and vpeq-reflexive

have 1∶ ∀ u . (run n (Some s0) execs
∥ run n (Some s0) (purge execs u)
⇀ (λrs rt. vpeq u rs rt ∧ current rs = current rt))

unfolding view-partitioned-def by auto
have run n (Some s0) execs ⇀ (λs-f . run n (Some s0) (purge execs (current s-f)) ⇀ (λs-f2. output-f s-f a =

output-f s-f2 a ∧ current s-f = current s-f2))
proof(cases run n (Some s0) execs)
case None

thus ?thesis unfolding B-def by simp
next
case (Some rs)

thus ?thesis
proof(cases run n (Some s0) (purge execs (current rs)))
case None

from Some this show ?thesis unfolding B-def by simp
next
case (Some rt)

from ⟨run n (Some s0) execs = Some rs⟩ Some 1[THEN spec,where x=current rs]
have vpeq∶ vpeq (current rs) rs rt ∧ current rs = current rt
unfolding B-def by auto

from this output-consistent have output-f rs a = output-f rt a
by auto

from this vpeq ⟨run n (Some s0) execs = Some rs⟩ Some
show ?thesis unfolding B-def by auto

qed
qed
}
thus ?thesis unfolding NI-unrelated-def by auto

qed

3.2.2 Security for indirectly interfering domains

Consider the following security policy over three domains A, B and C: A ↝ B ↝ C, but A /↝ C. The
semantics of this policy is that A may communicate with C, but only via B. No direct communication
from A to C is allowed. We formalize these semantics as follows: without intermediate domain B,
domain A cannot flow information to C. In other words, from the point of view of domain C the run

EURO-MILS D31.1 Page 21 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

where domain B is inactive must be equivalent to the run where domain B is inactive and domain A is
replaced by an attacker. Domain C must be independent of domain A, when domain B is inactive.

The aim of this subsection is to formalize the semantics whereA can write toC viaB only. We define
to two ipurge functions. The first purges all domains d that are intermediary for some other domain v.
An intermediary for u is defined as a domain d for which there exists an information flow from some
domain v to u via d, but no direct information flow from v to u is allowed.

definition intermediary ∶∶ ′dom-t⇒ ′dom-t⇒ bool
where intermediary d u ≡ ∃ v . ifpˆ∗∗ v d ∧ ifp d u ∧ ¬ifp v u ∧ d /= u
primrec remove-gateway-communications ∶∶ ′dom-t⇒ ′action-t execution⇒ ′action-t execution
where remove-gateway-communications u [] = []

∣ remove-gateway-communications u (aseq#exec) = (if ∃ a ∈ set aseq . ∃ v . intermediary v u ∧ v ∈ involved
(Some a) then [] else aseq)#(remove-gateway-communications u exec)

definition ipurge-l ∶∶
(′dom-t⇒ ′action-t execution)⇒ ′dom-t⇒ (′dom-t⇒ ′action-t execution) where
ipurge-l execs u ≡ λ d . if intermediary d u then

[]
else if d = u then

remove-gateway-communications u (execs u)
else execs d

The second ipurge removes both the intermediaries and the indirect sources. An indirect source for
u is defined as a domain that may indirectly flow information to u, but not directly.

abbreviation ind-source ∶∶ ′dom-t⇒ ′dom-t⇒ bool
where ind-source d u ≡ ifpˆ∗∗ d u ∧ ¬ifp d u
definition ipurge-r ∶∶
(′dom-t⇒ ′action-t execution)⇒ ′dom-t⇒ (′dom-t⇒ ′action-t execution) where
ipurge-r execs u ≡ λ d . if intermediary d u then

[]
else if ind-source d u then

SOME alpha . realistic-execution alpha
else if d = u then

remove-gateway-communications u (execs u)
else

execs d

For a system with an intransitive policy to be called secure for domain u any indirect source may not
flow information towards u when the intermediaries are purged out. This definition of security allows
the information flow A↝ B ↝ C, but prohibits A↝ C.

definition NI-indirect-sources ∶∶bool
where NI-indirect-sources
≡ ∀ execs a n. run n (Some s0) execs ⇀

(λ s-f . (run n (Some s0) (ipurge-l execs (current s-f)) ∥
run n (Some s0) (ipurge-r execs (current s-f)) ⇀

(λ s-l s-r . output-f s-l a = output-f s-r a)))

This definition concerns indirect sources only. It does not enforce that an unrelated domain may not
flow information to u. This is expressed by “secure”.

This allows us to define security over intransitive policies.

definition isecure∶∶bool
where isecure ≡ NI-indirect-sources ∧ NI-unrelated

abbreviation iequivalent-states ∶∶ ′state-t option ⇒ ′state-t option⇒ ′dom-t⇒ bool
where iequivalent-states s t u ≡ s ∥ t ⇀ (λ s t . (∀ v . ifp v u ∧ ¬intermediary v u Ð→ vpeq v s t) ∧ current s =
current t)

EURO-MILS D31.1 Page 22 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

definition does-not-communicate-with-gateway
where does-not-communicate-with-gateway u execs ≡ ∀ a . a ∈ actions-in-execution (execs u) Ð→ (∀ v . inter-
mediary v u Ð→ v ∉ involved (Some a))

definition iview-partitioned∶∶bool where iview-partitioned
≡ ∀ execs ms mt n u . iequivalent-states ms mt u Ð→

(run n ms (ipurge-l execs u) ∥
run n mt (ipurge-r execs u) ⇀
(λ rs rt . vpeq u rs rt ∧ current rs = current rt))

definition ipurged-relation1 ∶∶ ′dom-t⇒ (′dom-t⇒ ′action-t execution)⇒ (′dom-t⇒ ′action-t execution)⇒ bool
where ipurged-relation1 u execs1 execs2 ≡ ∀ d . (ifp d uÐ→ execs1 d = execs2 d) ∧ (intermediary d uÐ→ execs1
d = [])

Proof that if the current is not an intermediary for u, then all domains involved in the next action are
vpeq.
lemma vpeq-involved-domains∶
assumes ifp-curr∶ ifp (current s) u

and not-intermediary-curr∶ ¬intermediary (current s) u
and no-gateway-comm∶ does-not-communicate-with-gateway u execs
and vpeq-s-t∶ ∀ v . ifp v u ∧ ¬intermediary v u Ð→ vpeq v s t ′

and prec-s∶ precondition (next-state s execs) (next-action s execs)
shows ∀ d ∈ involved (next-action s execs) . vpeq d s t ′

proof−
{

fix v
assume involved∶ v ∈ involved (next-action s execs)
from this prec-s involved-ifp[THEN spec,THEN spec,where x1=next-state s execs and x=next-action s execs]

have ifp-v-curr∶ ifp v (current s)
using current-next-state
unfolding involved-def precondition-def B-def
by(cases next-action s execs,auto)

have vpeq v s t ′

proof−
{

assume ifp v u ∧ ¬intermediary v u
from this vpeq-s-t

have vpeq v s t ′ by (auto)
}
moreover
{

assume not-intermediary-v∶ intermediary v u
from ifp-curr not-intermediary-curr ifp-v-curr not-intermediary-v have curr-is-u∶ current s = u
using rtranclp-trans r-into-rtranclp
by (metis intermediary-def)
from curr-is-u next-action-from-execs[THEN spec,THEN spec,where x=execs and x1=s] not-intermediary-v

involved
no-gateway-comm[unfolded does-not-communicate-with-gateway-def ,THEN spec,where x=the (next-action

s execs)]
have False
unfolding involved-def B-def
by (cases next-action s execs,auto)

hence vpeq v s t ′ by auto
}
moreover
{

EURO-MILS D31.1 Page 23 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

assume intermediary-v∶ ¬ ifp v u
from ifp-curr not-intermediary-curr ifp-v-curr intermediary-v

have False unfolding intermediary-def by auto
hence vpeq v s t ′ by auto

}
ultimately
show vpeq v s t ′ unfolding intermediary-def by auto
qed
}
thus ?thesis by auto
qed

Proof that purging removes communications of the gateway to domain u.

lemma ipurge-l-removes-gateway-communications∶
shows does-not-communicate-with-gateway u (ipurge-l execs u)
proof−
{

fix aseq u execs a v
assume 1∶ aseq ∈ set (remove-gateway-communications u (execs u))
assume 2∶ a ∈ set aseq
assume 3∶ intermediary v u
have 4∶ v ∉ involved (Some a)
proof−
{

fix a∶∶ ′action-t
fix aseq u exec v
have aseq ∈ set (remove-gateway-communications u exec) ∧ a ∈ set aseq ∧ intermediary v u Ð→ v ∉ involved

(Some a)
by(induct exec,auto)

}
from 1 2 3 this show ?thesis by metis
qed
}
from this
show ?thesis
unfolding does-not-communicate-with-gateway-def ipurge-l-def actions-in-execution-def
by auto

qed

Proof of view partitioning. The lemma is structured exactly as lemma unwinding implies view partitioned ind
and uses the same convention for naming.

lemma iunwinding-implies-view-partitioned1∶
shows iview-partitioned
proof−
{

fix u execs execs2 s t n
have does-not-communicate-with-gateway u execs ∧ iequivalent-states s t u ∧ ipurged-relation1 u execs execs2
Ð→ iequivalent-states (run n s execs) (run n t execs2) u

proof (induct n s execs arbitrary∶ t u execs2 rule∶ run.induct)
case (1 s execs t u execs2)

show ?case by auto
next
case (2 n execs t u execs2)

show ?case by simp
next
case (3 n s execs t u execs2)

assume interrupt-s∶ interrupt (Suc n)
assume IH∶ (⋀t u execs2. does-not-communicate-with-gateway u execs ∧

EURO-MILS D31.1 Page 24 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

iequivalent-states (Some (cswitch (Suc n) s)) t u ∧ ipurged-relation1 u execs execs2Ð→
iequivalent-states (run n (Some (cswitch (Suc n) s)) execs) (run n t execs2) u)

{
fix t ′ ∶∶ ′state-t
assume t = Some t ′

fix rs
assume rs∶ run (Suc n) (Some s) execs = Some rs
fix rt
assume rt∶ run (Suc n) (Some t ′) execs2 = Some rt

assume no-gateway-comm∶ does-not-communicate-with-gateway u execs
assume vpeq-s-t∶ ∀ v . ifp v u ∧ ¬intermediary v u Ð→ vpeq v s t ′

assume current-s-t∶ current s = current t ′

assume purged-a-a2∶ ipurged-relation1 u execs execs2

from current-s-t cswitch-independent-of-state
have current-ns-nt∶ current (cswitch (Suc n) s) = current (cswitch (Suc n) t ′)
by blast

from cswitch-consistency vpeq-s-t
have vpeq-ns-nt∶ ∀ v . ifp v u ∧ ¬intermediary v u Ð→ vpeq v (cswitch (Suc n) s) (cswitch (Suc n) t ′)
by auto

from no-gateway-comm current-ns-nt vpeq-ns-nt interrupt-s vpeq-reflexive current-s-t purged-a-a2 IH[where
u=u and t=Some (cswitch (Suc n) t ′) and ?execs2.0=execs2]

have current-rs-rt∶ current rs = current rt using rs rt by(auto)
{

fix v
assume ia∶ ifp v u ∧ ¬intermediary v u

from no-gateway-comm interrupt-s current-ns-nt vpeq-ns-nt vpeq-reflexive ia current-s-t purged-a-a2
IH[where u=u and t=Some (cswitch (Suc n) t ′) and ?execs2.0=execs2]

have vpeq v rs rt using rs rt by(auto)
}
from current-rs-rt and this have iequivalent-states (Some rs) (Some rt) u by auto
}
thus ?case by(simp add∶option.splits,cases t,simp+)

next
case (4 n execs s t u execs2)

assume not-interrupt∶ ¬interrupt (Suc n)
assume thread-empty-s∶ thread-empty(execs (current s))

assume IH∶ (⋀t u execs2. does-not-communicate-with-gateway u execs ∧ iequivalent-states (Some s) t u ∧
ipurged-relation1 u execs execs2Ð→ iequivalent-states (run n (Some s) execs) (run n t execs2) u)
{

fix t ′

assume t∶ t = Some t ′

fix rs
assume rs∶ run (Suc n) (Some s) execs = Some rs
fix rt
assume rt∶ run (Suc n) (Some t ′) execs2 = Some rt

assume no-gateway-comm∶ does-not-communicate-with-gateway u execs
assume vpeq-s-t∶ ∀ v . ifp v u ∧ ¬intermediary v u Ð→ vpeq v s t ′

assume current-s-t∶ current s = current t ′

assume purged-a-a2∶ ipurged-relation1 u execs execs2

from ifp-reflexive vpeq-s-t have vpeq-u-s-t∶ vpeq u s t ′ unfolding intermediary-def by auto
from step-atomicity current-next-state current-s-t have current-s-nt∶ current s = current (step (next-state t ′

EURO-MILS D31.1 Page 25 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

execs2) (next-action t ′ execs2))
unfolding step-def
by (cases next-action s execs,cases next-action t ′ execs2,simp,simp,cases next-action t ′ execs2,simp,simp)

from vpeq-s-t have vpeq-curr-s-t∶ ifp (current s) u ∧ ¬intermediary (current s) u Ð→ vpeq (current s) s t ′ by
auto

have iequivalent-states (run (Suc n) (Some s) execs) (run (Suc n) (Some t ′) execs2) u
proof(cases thread-empty(execs2 (current t ′)))
case True

from purged-a-a2 and vpeq-s-t and current-s-t IH[where t=Some t ′ and u=u and ?execs2.0=execs2]
no-gateway-comm

have iequivalent-states (run n (Some s) execs) (run n (Some t ′) execs2) u using rs rt by(auto)
from this not-interrupt True thread-empty-s

show ?thesis using rs rt by(auto)
next
case False

have prec-t∶ precondition (next-state t ′ execs2) (next-action t ′ execs2)
proof−
{

assume not-prec-t∶ ¬precondition (next-state t ′ execs2) (next-action t ′ execs2)
hence run (Suc n) (Some t ′) execs2 = None using not-interrupt False not-prec-t by (simp)
from this have False using rt by(simp add∶option.splits)
}
thus ?thesis by auto

qed

from False purged-a-a2 thread-empty-s current-s-t
have 1∶ ind-source (current t ′) u ∨ unrelated (current t ′) u unfolding ipurged-relation1-def intermediary-def

by auto
{

fix v
assume ifp-v∶ ifp v u
assume v-not-intermediary∶ ¬intermediary v u

from 1 ifp-v v-not-intermediary have not-ifp-curr-v∶ ¬ifp (current t ′) v unfolding intermediary-def by auto
from not-ifp-curr-v prec-t locally-respects[THEN spec,THEN spec,THEN spec,where x1=next-state t ′

execs2 and x=v and x2=the (next-action t ′ execs2)]
current-next-state vpeq-reflexive

have vpeq v (next-state t ′ execs2) (step (next-state t ′ execs2) (next-action t ′ execs2))
unfolding step-def precondition-def B-def
by (cases next-action t ′ execs2,auto)

from this vpeq-transitive not-ifp-curr-v locally-respects-next-state
have vpeq-t-nt∶ vpeq v t ′ (step (next-state t ′ execs2) (next-action t ′ execs2))
by blast

from vpeq-s-t ifp-v v-not-intermediary vpeq-t-nt vpeq-transitive vpeq-symmetric vpeq-reflexive
have vpeq v s (step (next-state t ′ execs2) (next-action t ′ execs2))
by (metis)

}
hence vpeq-ns-nt∶ ∀ v . ifp v u ∧ ¬intermediary v u Ð→ vpeq v s (step (next-state t ′ execs2) (next-action t ′

execs2)) by auto
from False purged-a-a2 current-s-t thread-empty-s have purged-a-na2∶ ipurged-relation1 u execs (next-execs

t ′ execs2)
unfolding ipurged-relation1-def next-execs-def by(auto)

from vpeq-ns-nt no-gateway-comm
and IH[where t=Some (step (next-state t ′ execs2) (next-action t ′ execs2)) and ?execs2.0=(next-execs t ′

execs2) and u=u]
and current-s-nt purged-a-na2
have eq-ns-nt∶ iequivalent-states (run n (Some s) execs)

EURO-MILS D31.1 Page 26 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

(run n (Some (step (next-state t ′ execs2) (next-action t ′ execs2))) (next-execs t ′

execs2)) u by auto
from prec-t eq-ns-nt not-interrupt False thread-empty-s

show ?thesis using t rs rt by(auto)
qed
}
thus ?case by(simp add∶option.splits,cases t,simp+)

next
case (5 n execs s t u execs2)

assume not-interrupt∶ ¬interrupt (Suc n)
assume thread-not-empty-s∶ ¬thread-empty(execs (current s))
assume not-prec-s∶ ¬ precondition (next-state s execs) (next-action s execs)
hence run (Suc n) (Some s) execs = None using not-interrupt thread-not-empty-s by simp
thus ?case by(simp add∶option.splits)

next
case (6 n execs s t u execs2)
assume not-interrupt∶ ¬interrupt (Suc n)
assume thread-not-empty-s∶ ¬thread-empty(execs (current s))
assume prec-s∶ precondition (next-state s execs) (next-action s execs)
assume IH∶ (⋀t u execs2. does-not-communicate-with-gateway u (next-execs s execs) ∧

iequivalent-states (Some (step (next-state s execs) (next-action s execs))) t u ∧
ipurged-relation1 u (next-execs s execs) execs2Ð→
iequivalent-states
(run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs))
(run n t execs2) u)

{
fix t ′

assume t∶ t = Some t ′

fix rs
assume rs∶ run (Suc n) (Some s) execs = Some rs
fix rt
assume rt∶ run (Suc n) (Some t ′) execs2 = Some rt

assume no-gateway-comm∶ does-not-communicate-with-gateway u execs
assume vpeq-s-t∶ ∀ v . ifp v u ∧ ¬intermediary v u Ð→ vpeq v s t ′

assume current-s-t∶ current s = current t ′

assume purged-a-a2∶ ipurged-relation1 u execs execs2

from ifp-reflexive vpeq-s-t have vpeq-u-s-t∶ vpeq u s t ′ unfolding intermediary-def by auto
from step-atomicity and current-s-t current-next-state

have current-ns-nt∶ current (step (next-state s execs) (next-action s execs)) = current (step (next-state t ′

execs2) (next-action t ′ execs2))
unfolding step-def
by (cases next-action s execs,cases next-action t ′ execs2,simp,simp,cases next-action t ′ execs2,simp,simp)

from step-atomicity current-next-state current-s-t have current-ns-t∶ current (step (next-state s execs) (next-action
s execs)) = current t ′

unfolding step-def
by (cases next-action s execs,auto)
from vpeq-s-t have vpeq-curr-s-t∶ ifp (current s) u ∧ ¬intermediary (current s) u Ð→ vpeq (current s) s t ′

unfolding intermediary-def by auto
from current-s-t purged-a-a2

have eq-execs∶ ifp (current s) u ∧ ¬intermediary (current s) u Ð→ execs (current s) = execs2 (current s)
by(auto simp add∶ ipurged-relation1-def)

from vpeq-involved-domains no-gateway-comm vpeq-s-t vpeq-involved-domains prec-s
have vpeq-involved∶ ifp (current s) u ∧ ¬intermediary (current s) uÐ→ (∀ d ∈ involved (next-action s execs)

. vpeq d s t ′)

EURO-MILS D31.1 Page 27 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

by blast
from current-s-t next-execs-consistent[THEN spec,THEN spec,THEN spec,where x2=s and x1=t ′ and x=execs]

vpeq-curr-s-t vpeq-involved
have next-execs-t∶ ifp (current s) u ∧ ¬intermediary (current s) uÐ→ next-execs t ′ execs = next-execs s execs
by(auto simp add∶ next-execs-def)

from current-s-t and purged-a-a2 and thread-not-empty-s next-action-consistent[THEN spec,THEN spec,where
x1=s and x=t ′] vpeq-curr-s-t vpeq-involved

have next-action-s-t∶ ifp (current s) u ∧ ¬intermediary (current s) uÐ→ next-action t ′ execs2 = next-action s
execs

by(unfold next-action-def ,unfold ipurged-relation1-def ,auto)
from purged-a-a2 and thread-not-empty-s and current-s-t
have thread-not-empty-t∶ ifp (current s) u ∧ ¬intermediary (current s) uÐ→ ¬thread-empty(execs2 (current

t ′))
unfolding ipurged-relation1-def by auto
have vpeq-ns-nt-1∶ ⋀ a . precondition (next-state s execs) a ∧ precondition (next-state t ′ execs) a Ô⇒ ifp

(current s) u ∧ ¬intermediary (current s) uÔ⇒ (∀ v . ifp v u ∧ ¬intermediary v uÐ→ vpeq v (step (next-state s
execs) a) (step (next-state t ′ execs) a))

proof−
fix a
assume precs∶ precondition (next-state s execs) a ∧ precondition (next-state t ′ execs) a
assume ifp-curr∶ ifp (current s) u ∧ ¬intermediary (current s) u
from ifp-curr precs

next-state-consistent[THEN spec,THEN spec,where x1=s and x=t ′] vpeq-curr-s-t vpeq-s-t
current-next-state current-s-t weakly-step-consistent[THEN spec,THEN spec,THEN spec,THEN spec,where

x3=next-state s execs and x2=next-state t ′ execs and x=the a]
show ∀ v . ifp v u ∧ ¬intermediary v u Ð→ vpeq v (step (next-state s execs) a) (step (next-state t ′ execs) a)

unfolding step-def precondition-def B-def
by (cases a,auto)

qed
have no-gateway-comm-na∶ does-not-communicate-with-gateway u (next-execs s execs)
proof−
{

fix a
assume a ∈ actions-in-execution (next-execs s execs u)
from this no-gateway-comm[unfolded does-not-communicate-with-gateway-def ,THEN spec,where x=a]

next-execs-subset[THEN spec,THEN spec,THEN spec,where x2=s and x1=execs and x0=u]
have ∀ v. intermediary v u Ð→ v ∉ involved (Some a)
unfolding actions-in-execution-def
by(auto)

}
thus ?thesis unfolding does-not-communicate-with-gateway-def by auto
qed

have iequivalent-states (run (Suc n) (Some s) execs) (run (Suc n) (Some t ′) execs2) u
proof (cases ifp (current s) u ∧ ¬intermediary (current s) u rule ∶case-split[case-names T F])
case T

show ?thesis
proof (cases thread-empty(execs2 (current t ′)) rule ∶case-split[case-names T2 F2])
case F2

show ?thesis
proof (cases precondition (next-state t ′ execs2) (next-action t ′ execs2) rule ∶case-split[case-names T3 F3])

case T3
from T purged-a-a2 current-s-t

next-execs-consistent[THEN spec,THEN spec,where x1=s and x=t ′] vpeq-curr-s-t vpeq-involved
have purged-na-na2∶ ipurged-relation1 u (next-execs s execs) (next-execs t ′ execs2)
unfolding ipurged-relation1-def next-execs-def
by auto

EURO-MILS D31.1 Page 28 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

from IH[where t=Some (step (next-state t ′ execs2) (next-action t ′ execs2)) and ?execs2.0=next-execs t ′

execs2 and u=u]
purged-na-na2 current-ns-nt vpeq-ns-nt-1[where a=(next-action s execs)] T T3 prec-s
next-action-s-t eq-execs current-s-t no-gateway-comm-na

have eq-ns-nt∶ iequivalent-states (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs
s execs))

(run n (Some (step (next-state t ′ execs2) (next-action t ′ execs2))) (next-execs t ′

execs2)) u
unfolding next-state-def
by (auto,metis)

from this not-interrupt thread-not-empty-s prec-s F2 T3
have current-rs-rt∶ current rs = current rt using rs rt by auto
{

fix v
assume ia∶ ifp v u ∧ ¬intermediary v u
from this eq-ns-nt not-interrupt thread-not-empty-s prec-s F2 T3

have vpeq v rs rt using rs rt by auto
}
from this and current-rs-rt show ?thesis using rs rt by auto

next
case F3

from F3 F2 not-interrupt show ?thesis using rt by simp
qed

next
case T2

from T2 T purged-a-a2 thread-not-empty-s current-s-t prec-s next-action-s-t vpeq-u-s-t
have ind-source∶ False unfolding ipurged-relation1-def by auto

thus ?thesis by auto
qed

next
case F

hence 1∶ ind-source (current s) u ∨ unrelated (current s) u ∨ intermediary (current s) u
unfolding intermediary-def
by auto

from purged-a-a2 and thread-not-empty-s
have 2∶ ¬intermediary (current s) u unfolding ipurged-relation1-def by auto

let ?nt = if thread-empty(execs2 (current t ′)) then t ′ else step (next-state t ′ execs2) (next-action t ′ execs2)
let ?na2 = if thread-empty(execs2 (current t ′)) then execs2 else next-execs t ′ execs2

have prec-t∶ ¬thread-empty(execs2 (current t ′)) Ô⇒ precondition (next-state t ′ execs2) (next-action t ′

execs2)
proof−

assume thread-not-empty-t∶ ¬thread-empty(execs2 (current t ′))
{

assume not-prec-t∶ ¬precondition (next-state t ′ execs2) (next-action t ′ execs2)
hence run (Suc n) (Some t ′) execs2 = None using not-interrupt thread-not-empty-t not-prec-t by (simp)
from this have False using rt by(simp add∶option.splits)
}
thus ?thesis by auto

qed

show ?thesis
proof−
{
fix v
assume ifp-v∶ ifp v u

EURO-MILS D31.1 Page 29 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

assume v-not-intermediary∶ ¬intermediary v u

have not-ifp-curr-v∶ ¬ifp (current s) v
proof

assume ifp-curr-v∶ ifp (current s) v
thus False
proof−
{

assume ind-source (current s) u
from this ifp-curr-v ifp-v have intermediary v u unfolding intermediary-def by auto
from this v-not-intermediary have False unfolding intermediary-def by auto

}
moreover
{

assume unrelated∶ unrelated (current s) u
from this ifp-v ifp-curr-v have False using rtranclp-trans r-into-rtranclp by metis

}
ultimately show ?thesis using 1 2 by auto

qed
qed
from this current-next-state[THEN spec,THEN spec,where x1=s and x=execs] prec-s

locally-respects[THEN spec,THEN spec,where x=next-state s execs] vpeq-reflexive
have vpeq v (next-state s execs) (step (next-state s execs) (next-action s execs))
unfolding step-def precondition-def B-def
by (cases next-action s execs,auto)

from not-ifp-curr-v this locally-respects-next-state vpeq-transitive
have vpeq-s-ns∶ vpeq v s (step (next-state s execs) (next-action s execs))
by blast

from not-ifp-curr-v current-s-t current-next-state[THEN spec,THEN spec,where x1=t ′ and x=execs2] prec-t
locally-respects[THEN spec,THEN spec,where x=next-state t ′ execs2]
F vpeq-reflexive
have 0∶ ¬ thread-empty (execs2 (current t ′))Ð→ vpeq v (next-state t ′ execs2) (step (next-state t ′ execs2)

(next-action t ′ execs2))
unfolding step-def precondition-def B-def
by (cases next-action t ′ execs2,auto)
from 0 not-ifp-curr-v current-s-t locally-respects-next-state[THEN spec,THEN spec,THEN spec,where

x2=t ′ and x1=v and x=execs2]
vpeq-transitive
have vpeq-t-nt∶ ¬ thread-empty (execs2 (current t ′))Ð→ vpeq v t ′ (step (next-state t ′ execs2) (next-action

t ′ execs2)) by metis
from this vpeq-reflexive

have vpeq-t-nt∶ vpeq v t ′ ?nt
by auto

from vpeq-s-t ifp-v v-not-intermediary
have vpeq v s t ′ by auto

from this vpeq-s-ns vpeq-t-nt vpeq-transitive vpeq-symmetric vpeq-reflexive
have vpeq v (step (next-state s execs) (next-action s execs)) ?nt
by (metis (hide-lams, no-types))
}

hence vpeq-ns-nt∶ ∀ v . ifp v u ∧ ¬intermediary v u Ð→ vpeq v (step (next-state s execs) (next-action s
execs)) ?nt by auto

from vpeq-s-t 2 F purged-a-a2 current-s-t thread-not-empty-s have purged-na-na2∶ ipurged-relation1 u
(next-execs s execs) ?na2

unfolding ipurged-relation1-def next-execs-def intermediary-def by(auto)
from current-ns-nt current-ns-t current-next-state have current-ns-nt∶
current (step (next-state s execs) (next-action s execs)) = current ?nt
by auto

EURO-MILS D31.1 Page 30 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

from prec-s vpeq-ns-nt no-gateway-comm-na
and IH[where t=Some ?nt and ?execs2.0=?na2 and u=u]
and current-ns-nt purged-na-na2

have eq-ns-nt∶ iequivalent-states (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs
s execs))

(run n (Some ?nt) ?na2) u by auto

from this not-interrupt thread-not-empty-s prec-t prec-s
have current-rs-rt∶ current rs = current rt using rs rt by (cases thread-empty (execs2 (current

t ′)),simp,simp)
{

fix v
assume ia∶ ifp v u ∧ ¬intermediary v u
from this eq-ns-nt not-interrupt thread-not-empty-s prec-s prec-t

have vpeq v rs rt
using rs rt by (cases thread-empty(execs2 (current t ′)),simp,simp)

}
from current-rs-rt and this show ?thesis using rs rt by auto

qed
qed
}
thus ?case by(simp add∶option.splits,cases t,simp+)

qed
}
hence iview-partitioned-inductive∶ ∀ u s t execs execs2 n. does-not-communicate-with-gateway u execs ∧ iequivalent-states
s t u ∧ ipurged-relation1 u execs execs2Ð→ iequivalent-states (run n s execs) (run n t execs2) u

by blast
have ipurged-relation∶ ∀ u execs . ipurged-relation1 u (ipurge-l execs u) (ipurge-r execs u)

by(unfold ipurged-relation1-def ,unfold ipurge-l-def ,unfold ipurge-r-def ,auto)
{

fix execs s t n u
assume 1∶ iequivalent-states s t u
from ifp-reflexive

have dir-source∶ ∀ u . ifp u u ∧ ¬intermediary u u unfolding intermediary-def by auto
from ipurge-l-removes-gateway-communications

have does-not-communicate-with-gateway u (ipurge-l execs u)
by auto

from 1 this iview-partitioned-inductive ipurged-relation
have iequivalent-states (run n s (ipurge-l execs u)) (run n t (ipurge-r execs u)) u by auto

from this dir-source
have run n s (ipurge-l execs u) ∥ run n t (ipurge-r execs u) ⇀ (λrs rt. vpeq u rs rt ∧ current rs = current rt)
using r-into-rtranclp unfolding B-def
by(cases run n s (ipurge-l execs u),simp,cases run n t (ipurge-r execs u),simp,auto)

}
thus ?thesis unfolding iview-partitioned-def Let-def by auto
qed

Returns True iff and only if the two states have the same active domain, or if one of the states is
None.

definition mcurrents ∶∶ ′state-t option⇒ ′state-t option⇒ bool
where mcurrents m1 m2 ≡ m1 ∥ m2 ⇀ (λ s t . current s = current t)

Proof that switching/interrupts are purely time-based and happen independent of the actions done by
the domains. As all theorems in this locale, it holds vacuously whenever one of the states is None, i.e.,
whenver at some point a precondition does not hold.

lemma current-independent-of-domain-actions∶
assumes current-s-t∶ mcurrents s t

EURO-MILS D31.1 Page 31 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

shows mcurrents (run n s execs) (run n t execs2)
proof−
{

fix n s execs t execs2
have mcurrents s t Ð→ mcurrents (run n s execs) (run n t execs2)
proof (induct n s execs arbitrary∶ t execs2 rule∶ run.induct)
case (1 s execs t execs2)

from this show ?case using current-s-t unfolding B-def by auto
next
case (2 n execs t execs2)

show ?case unfolding mcurrents-def by(auto)
next
case (3 n s execs t execs2)

assume interrupt∶ interrupt (Suc n)
assume IH∶ (⋀t execs2. mcurrents (Some (cswitch (Suc n) s)) t Ð→ mcurrents (run n (Some (cswitch (Suc n)

s)) execs) (run n t execs2))
{

fix t ′

assume t∶ t = (Some t ′)
assume curr∶ mcurrents (Some s) t
from t curr cswitch-independent-of-state[THEN spec,THEN spec,THEN spec,where x1=s] have current-ns-nt∶

current (cswitch (Suc n) s) = current (cswitch (Suc n) t ′)
unfolding mcurrents-def by simp

from current-ns-nt IH[where t=Some (cswitch (Suc n) t ′) and ?execs2.0=execs2]
have mcurrents-ns-nt∶ mcurrents (run n (Some (cswitch (Suc n) s)) execs) (run n (Some (cswitch (Suc n)

t ′)) execs2)
unfolding mcurrents-def by(auto)

from mcurrents-ns-nt interrupt t
have mcurrents (run (Suc n) (Some s) execs) (run (Suc n) t execs2)
unfolding mcurrents-def B2-def B-def by(cases run n (Some (cswitch (Suc n) s)) execs, cases run (Suc n) t

execs2,auto)
}
thus ?case unfolding mcurrents-def B2-def by(cases t,auto)

next
case (4 n execs s t execs2)

assume not-interrupt∶ ¬interrupt (Suc n)
assume thread-empty-s∶ thread-empty(execs (current s))
assume IH∶ (⋀t execs2. mcurrents (Some s) t Ð→ mcurrents (run n (Some s) execs) (run n t execs2))
{

fix t ′

assume t∶ t = (Some t ′)
assume curr∶ mcurrents (Some s) t
{

assume thread-empty-t∶ thread-empty(execs2 (current t ′))
from t curr not-interrupt thread-empty-s this IH[where ?execs2.0=execs2 and t=Some t ′]
have mcurrents (run (Suc n) (Some s) execs) (run (Suc n) t execs2)
by auto

}
moreover
{
assume not-prec-t∶ ¬thread-empty(execs2 (current t ′)) ∧ ¬precondition (next-state t ′ execs2) (next-action t ′

execs2)
from t this not-interrupt

have mcurrents (run (Suc n) (Some s) execs) (run (Suc n) t execs2)
unfolding mcurrents-def by (simp add∶ rewrite-B2-cases)

}
moreover

EURO-MILS D31.1 Page 32 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

{
assume step-t∶ ¬thread-empty(execs2 (current t ′)) ∧ precondition (next-state t ′ execs2) (next-action t ′

execs2)
have mcurrents (Some s) (Some (step (next-state t ′ execs2) (next-action t ′ execs2)))

using step-atomicity curr t current-next-state unfolding mcurrents-def
unfolding step-def
by (cases next-action t ′ execs2,auto)
from t step-t curr not-interrupt thread-empty-s this IH[where ?execs2.0=next-execs t ′ execs2 and t=Some

(step (next-state t ′ execs2) (next-action t ′ execs2))]
have mcurrents (run (Suc n) (Some s) execs) (run (Suc n) t execs2)
by auto

}
ultimately have mcurrents (run (Suc n) (Some s) execs) (run (Suc n) t execs2) by blast
}
thus ?case unfolding mcurrents-def B2-def by(cases t,auto)

next
case (5 n execs s t execs2)

assume not-interrupt-s∶ ¬interrupt (Suc n)
assume thread-not-empty-s∶ ¬thread-empty(execs (current s))
assume not-prec-s∶ ¬ precondition (next-state s execs) (next-action s execs)
hence run (Suc n) (Some s) execs = None using not-interrupt-s thread-not-empty-s by simp
thus ?case unfolding mcurrents-def by(simp add∶option.splits)

next
case (6 n execs s t execs2)

assume not-interrupt∶ ¬interrupt (Suc n)
assume thread-not-empty-s∶ ¬thread-empty(execs (current s))
assume prec-s∶ precondition (next-state s execs) (next-action s execs)
assume IH∶ (⋀t execs2.

mcurrents (Some (step (next-state s execs) (next-action s execs))) t Ð→
mcurrents (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs)) (run n t

execs2))
{

fix t ′

assume t∶ t = (Some t ′)
assume curr∶ mcurrents (Some s) t
{

assume thread-empty-t∶ thread-empty(execs2 (current t ′))
have mcurrents (Some (step (next-state s execs) (next-action s execs))) (Some t ′)
using step-atomicity curr t current-next-state unfolding mcurrents-def
unfolding step-def
by (cases next-action s execs,auto)
from t curr not-interrupt thread-not-empty-s prec-s thread-empty-t this IH[where ?execs2.0=execs2 and

t=Some t ′]
have mcurrents (run (Suc n) (Some s) execs) (run (Suc n) t execs2)
by auto

}
moreover
{
assume not-prec-t∶ ¬thread-empty(execs2 (current t ′)) ∧ ¬precondition (next-state t ′ execs2) (next-action t ′

execs2)
from t this not-interrupt

have mcurrents (run (Suc n) (Some s) execs) (run (Suc n) t execs2)
unfolding mcurrents-def B2-def by (auto)

}
moreover
{

assume step-t∶ ¬thread-empty(execs2 (current t ′)) ∧ precondition (next-state t ′ execs2) (next-action t ′

EURO-MILS D31.1 Page 33 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

execs2)
have mcurrents (Some (step (next-state s execs) (next-action s execs))) (Some (step (next-state t ′ execs2)

(next-action t ′ execs2)))
using step-atomicity curr t current-next-state unfolding mcurrents-def
unfolding step-def

by (cases next-action s execs,simp,cases next-action t ′ execs2,simp,simp,cases next-action t ′ execs2,simp,simp)
from current-next-state t step-t curr not-interrupt thread-not-empty-s prec-s this IH[where ?execs2.0=next-execs

t ′ execs2 and t=Some (step (next-state t ′ execs2) (next-action t ′ execs2))]
have mcurrents (run (Suc n) (Some s) execs) (run (Suc n) t execs2)
by auto

}
ultimately have mcurrents (run (Suc n) (Some s) execs) (run (Suc n) t execs2) by blast
}
thus ?case unfolding mcurrents-def B2-def by(cases t,auto)

qed
}
thus ?thesis using current-s-t by auto
qed

theorem unwinding-implies-NI-indirect-sources∶
shows NI-indirect-sources
proof−
{

fix execs a n
from assms iunwinding-implies-view-partitioned1

have vp∶ iview-partitioned by blast
from vp and vpeq-reflexive
have 1∶ ∀ u . run n (Some s0) (ipurge-l execs u) ∥ run n (Some s0) (ipurge-r execs u) ⇀ (λrs rt. vpeq u rs rt

∧ current rs = current rt)
unfolding iview-partitioned-def by auto

have run n (Some s0) execs ⇀ (λs-f . run n (Some s0) (ipurge-l execs (current s-f)) ∥
run n (Some s0) (ipurge-r execs (current s-f)) ⇀
(λs-l s-r. output-f s-l a = output-f s-r a))

proof(cases run n (Some s0) execs)
case None

thus ?thesis unfolding B-def by simp
next
case (Some s-f)
thus ?thesis
proof(cases run n (Some s0) (ipurge-l execs (current s-f)))
case None

from Some this show ?thesis unfolding B-def by simp
next
case (Some s-ipurge-l)

show ?thesis
proof(cases run n (Some s0) (ipurge-r execs (current s-f)))
case None

from ⟨run n (Some s0) execs = Some s-f ⟩ Some this show ?thesis unfolding B-def by simp
next
case (Some s-ipurge-r)

from cswitch-independent-of-state
⟨run n (Some s0) execs = Some s-f ⟩ ⟨run n (Some s0) (ipurge-l execs (current s-f)) = Some s-ipurge-l⟩

current-independent-of-domain-actions[where n=n and s=Some s0 and t=Some s0 and execs=execs and
?execs2.0=(ipurge-l execs (current s-f))]

have 2∶ current s-ipurge-l = current s-f
unfolding mcurrents-def B-def by auto

EURO-MILS D31.1 Page 34 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

from ⟨run n (Some s0) execs = Some s-f ⟩ ⟨run n (Some s0) (ipurge-l execs (current s-f)) = Some s-ipurge-l⟩
Some 1[THEN spec,where x=current s-f]

have vpeq (current s-f) s-ipurge-l s-ipurge-r ∧ current s-ipurge-l = current s-ipurge-r
unfolding B-def by auto

from this 2 have output-f s-ipurge-l a = output-f s-ipurge-r a
using output-consistent by auto

from ⟨run n (Some s0) execs = Some s-f ⟩ ⟨run n (Some s0) (ipurge-l execs (current s-f)) = Some s-ipurge-l⟩
this Some

show ?thesis unfolding B-def by auto
qed

qed
qed

}
thus ?thesis unfolding NI-indirect-sources-def by auto

qed

theorem unwinding-implies-isecure∶
shows isecure
using unwinding-implies-NI-indirect-sources unwinding-implies-NI-unrelated assms unfolding isecure-def by(auto)

end
end

3.3 ISK (Interruptible Separation Kernel)
theory ISK
imports SK

begin

At this point, the precondition linking action to state is generic and highly unconstrained. We refine
the previous locale by given generic functions “precondition” and “realistic trace” a definiton. This
yields a total run function, instead of the partial one of locale Separation Kernel.

This definition is based on a set of valid action sequences AS set. Consider for example the following
action sequence:

γ = [COPY INIT,COPY CHECK,COPY COPY]

If action sequence γ is a member of AS set, this means that the attack surface contains an action COPY,
which consists of three consecutive atomic kernel actions. Interrupts can occur anywhere between these
atomic actions.

Given a set of valid action sequences such as γ, generic function precondition can be defined. It now
consists of 1.) a generic invariant and 2.) more refined preconditions for the current action.

These preconditions need to be proven inductive only according to action sequences. Assume, e.g.,
that γ ∈ AS set and that d is the currently active domain in state s. The following constraints are assumed
and must therefore be proven for the instantiation:

• “AS precondition s d COPY INIT”
since COPY INIT is the start of an action sequence.

• “AS precondition (step s COPY INIT) d COPY CHECK”
since (COPY INIT, COPY CHECK) is a sub sequence.

• “AS precondition (step s COPY CHECK) d COPY COPY”
since (COPY CHECK, COPY COPY) is a sub sequence.

Additionally, the precondition for domain d must be consistent when a context switch occurs, or when
ever some other domain d′ performs an action.

EURO-MILS D31.1 Page 35 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

Locale Interruptible Separation Kernel refines locale Separation Kernel in two ways. First, there is
a definition of realistic executions. A realistic trace consists of action sequences from AS set.

Secondly, the generic control function has been refined by additional assumptions. It is now assumed
that control conforms to one of four possibilities:

1. The execution of the currently active domain is empty and the control function returns no action.

2. The currently active domain is executing the action sequence at the head of the execution. It returns
the next kernel action of this sequence and updates the execution accordingly.

3. The action sequence is delayed.

4. The action sequence that is at the head of the execution is skipped and the execution is updated
accordingly.

As for the state update, this is still completely unconstrained and generic as long as it respects the generic
invariant and the precondition.

locale Interruptible-Separation-Kernel = Separation-Kernel kstep output-f s0 current cswitch interrupt kprecondi-
tion realistic-execution control kinvolved ifp vpeq

for kstep ∶∶ ′state-t⇒ ′action-t⇒ ′state-t
and output-f ∶∶ ′state-t⇒ ′action-t⇒ ′output-t
and s0 ∶∶ ′state-t
and current ∶∶ ′state-t => ′dom-t — Returns the currently active domain
and cswitch ∶∶ time-t⇒ ′state-t⇒ ′state-t — Switches the current domain
and interrupt ∶∶ time-t⇒ bool — Returns t iff an interrupt occurs in the given state at the given time
and kprecondition ∶∶ ′state-t ⇒ ′action-t ⇒ bool — Returns t if an precondition holds that relates the current

action to the state
and realistic-execution ∶∶ ′action-t execution⇒ bool — In this locale, this function is completely unconstrained.
and control ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t execution⇒ ((′action-t option) × ′action-t execution × ′state-t)
and kinvolved ∶∶ ′action-t⇒ ′dom-t set
and ifp ∶∶ ′dom-t⇒ ′dom-t⇒ bool
and vpeq ∶∶ ′dom-t⇒ ′state-t⇒ ′state-t⇒ bool
+

fixes AS-set ∶∶ (′action-t list) set — Returns a set of valid action sequences, i.e., the attack surface
and invariant ∶∶ ′state-t⇒ bool
and AS-precondition ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t⇒ bool
and aborting ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t⇒ bool
and waiting ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t⇒ bool

assumes empty-in-AS-set∶ [] ∈ AS-set
and invariant-s0∶ invariant s0
and invariant-after-cswitch∶ ∀ s n . invariant s Ð→ invariant (cswitch n s)
and precondition-after-cswitch∶ ∀ s d n a. AS-precondition s d a Ð→ AS-precondition (cswitch n s) d a
and AS-prec-first-action∶ ∀ s d aseq . invariant s ∧ aseq ∈ AS-set ∧ aseq /= []Ð→ AS-precondition s d (hd aseq)
and AS-prec-after-step∶ ∀ s a a ′ . (∃ aseq ∈ AS-set . is-sub-seq a a ′ aseq) ∧ invariant s ∧ AS-precondition s

(current s) a ∧ ¬aborting s (current s) a ∧ ¬ waiting s (current s) a Ð→ AS-precondition (kstep s a) (current s)
a ′

and AS-prec-dom-independent∶ ∀ s d a a ′ . current s /= d ∧ AS-precondition s d a Ð→ AS-precondition (kstep s
a ′) d a

and spec-of-invariant∶ ∀ s a . invariant s Ð→ invariant (kstep s a)

and kprecondition-def ∶ kprecondition s a ≡ invariant s ∧ AS-precondition s (current s) a
and realistic-execution-def ∶ realistic-execution aseq ≡ set aseq ⊆ AS-set
and control-spec∶ ∀ s d aseqs . case control s d aseqs of (a,aseqs ′,s ′)⇒

(thread-empty aseqs ∧ (a,aseqs ′) = (None,[])) ∨ (∗ Nothing happens ∗)
(aseqs /= [] ∧ hd aseqs /= [] ∧ ¬aborting s ′ d (the a) ∧ ¬ waiting s ′ d (the a) ∧ (a,aseqs ′) =

(Some (hd (hd aseqs)), (tl (hd aseqs))#(tl aseqs))) ∨ (∗ Execute the first action of the current action sequence
∗)

EURO-MILS D31.1 Page 36 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

(aseqs /= [] ∧ hd aseqs /= [] ∧ waiting s ′ d (the a) ∧ (a,aseqs ′,s ′) = (Some (hd (hd
aseqs)),aseqs,s)) ∨ (∗ Nothing happens, waiting to execute the next action ∗)

(a,aseqs ′) = (None,tl aseqs)
and next-action-after-cswitch∶ ∀ s n d aseqs . fst (control (cswitch n s) d aseqs) = fst (control s d aseqs)
and next-action-after-next-state∶ ∀ s execs d . current s /= d Ð→ fst (control (next-state s execs) d (execs d))

= None ∨ fst (control (next-state s execs) d (execs d)) = fst (control s d (execs d))
and next-action-after-step∶ ∀ s a d aseqs . current s /= d Ð→ fst (control (step s a) d aseqs) = fst (control s d

aseqs)
and next-state-precondition∶ ∀ s d a execs. AS-precondition s d aÐ→ AS-precondition (next-state s execs) d a
and next-state-invariant∶ ∀ s execs . invariant s Ð→ invariant (next-state s execs)
and spec-of-waiting∶ ∀ s a . waiting s (current s) a Ð→ kstep s a = s

begin

We can now formulate a total run function, since based on the new assumptions the case where the
precondition does not hold, will never occur.

function run-total ∶∶ time-t⇒ ′state-t⇒ (′dom-t⇒ ′action-t execution)⇒ ′state-t
where run-total 0 s execs = s
∣ interrupt (Suc n)Ô⇒ run-total (Suc n) s execs = run-total n (cswitch (Suc n) s) execs
∣ ¬interrupt (Suc n)Ô⇒ thread-empty(execs (current s))Ô⇒ run-total (Suc n) s execs = run-total n s execs
∣ ¬interrupt (Suc n)Ô⇒ ¬thread-empty(execs (current s))Ô⇒

run-total (Suc n) s execs = run-total n (step (next-state s execs) (next-action s execs)) (next-execs s execs)
using not0-implies-Suc by (metis prod-cases3,auto)
termination by lexicographic-order

The major part of the proofs in this locale consist of proving that function run total is equivalent to
function run, i.e., that the precondition does always hold. This assumes that the executions are realistic.
This means that the execution of each domain contains action sequences that are from AS set. This
ensures, e.g, that a COPY CHECK is always preceded by a COPY INIT.

definition realistic-executions ∶∶ (′dom-t⇒ ′action-t execution)⇒ bool
where realistic-executions execs ≡ ∀ d . realistic-execution (execs d)

Lemma run total equals run is proven by doing induction. It is however not inductive and can there-
fore not be proven directly: a realistic execution is not necessarily realistic after performing one ac-
tion. We generalize to do induction. Predicate realistic executions ind is the inductive version of realis-
tic executions. All action sequences in the tail of the executions must be complete action sequences (i.e.,
they must be from AS set). The first action sequence, however, is being executed and is therefore not
necessarily an action sequence from AS set, but it is the last part of some action sequence from AS set.

definition realistic-AS-partial ∶∶ ′action-t list⇒ bool
where realistic-AS-partial aseq ≡ ∃ n aseq ′ . n ≤ length aseq ′ ∧ aseq ′ ∈ AS-set ∧ aseq = lastn n aseq ′

definition realistic-executions-ind ∶∶ (′dom-t⇒ ′action-t execution)⇒ bool
where realistic-executions-ind execs ≡ ∀ d . (case execs d of [] ⇒ True ∣ (aseq#aseqs) ⇒ realistic-AS-partial
aseq ∧ set aseqs ⊆ AS-set)

We need to know that invariably, the precondition holds. As this precondition consists of 1.) a generic
invariant and 2.) more refined preconditions for the current action, we have to know that these two are
invariably true.

definition precondition-ind ∶∶ ′state-t⇒ (′dom-t⇒ ′action-t execution)⇒ bool
where precondition-ind s execs ≡ invariant s ∧ (∀ d . fst(control s d (execs d)) ⇀ AS-precondition s d)

Proof that “execution is realistic” is inductive, i.e., assuming the current execution is realistic, the
execution returned by the control mechanism is realistic.

lemma next-execution-is-realistic-partial∶
assumes na-def ∶ next-execs s execs d = aseq # aseqs

and d-is-curr∶ d = current s
and realistic∶ realistic-executions-ind execs
and thread-not-empty∶ ¬thread-empty(execs (current s))

EURO-MILS D31.1 Page 37 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

shows realistic-AS-partial aseq ∧ set aseqs ⊆ AS-set
proof−
let ?c = control s (current s) (execs (current s))
{

assume c-empty∶ let (a,aseqs ′,s ′) = ?c in
(a,aseqs ′) = (None,[])

from na-def d-is-curr c-empty
have ?thesis
unfolding realistic-executions-ind-def next-execs-def by (auto)

}
moreover
{

let ?ct= execs (current s)
let ?execs ′ = (tl (hd ?ct))#(tl ?ct)
let ?a ′ = Some (hd (hd ?ct))
assume hd-thread-not-empty∶ hd (execs (current s)) /= []
assume c-executing∶ let (a,aseqs ′,s ′) = ?c in

(a,aseqs ′) = (?a ′, ?execs ′)
from na-def c-executing d-is-curr

have as-defs∶ aseq = tl (hd ?ct) ∧ aseqs = tl ?ct
unfolding next-execs-def by (auto)

from realistic[unfolded realistic-executions-ind-def ,THEN spec,where x=d] d-is-curr
have subset∶ set (tl ?execs ′) ⊆ AS-set
unfolding Let-def realistic-AS-partial-def
by (cases execs d,auto)

from d-is-curr thread-not-empty hd-thread-not-empty realistic[unfolded realistic-executions-ind-def ,THEN spec,where
x=d]

obtain n aseq ′where n-aseq ′∶ n ≤ length aseq ′ ∧ aseq ′ ∈ AS-set ∧ hd ?ct = lastn n aseq ′

unfolding realistic-AS-partial-def
by (cases execs d,auto)

from this hd-thread-not-empty have n > 0 unfolding lastn-def by(cases n,auto)
from this n-aseq ′ lastn-one-less[where n=n and x=aseq ′and a=hd (hd ?ct) and y=tl (hd ?ct)] hd-thread-not-empty

have n − 1 ≤ length aseq ′ ∧ aseq ′ ∈ AS-set ∧ tl (hd ?ct) = lastn (n − 1) aseq ′

by auto
from this as-defs subset have ?thesis

unfolding realistic-AS-partial-def
by auto

}
moreover
{

let ?ct= execs (current s)
let ?execs ′ = ?ct
let ?a ′ = Some (hd (hd ?ct))
assume c-waiting∶ let (a,aseqs ′,s ′) = ?c in

(a,aseqs ′) = (?a ′, ?execs ′)
from na-def c-waiting d-is-curr

have as-defs∶ aseq = hd ?execs ′ ∧ aseqs = tl ?execs ′

unfolding next-execs-def by (auto)
from realistic[unfolded realistic-executions-ind-def ,THEN spec,where x=d] d-is-curr set-tl-is-subset[where

x=?execs ′]
have subset∶ set (tl ?execs ′) ⊆ AS-set
unfolding Let-def realistic-AS-partial-def
by (cases execs d,auto)

from na-def c-waiting d-is-curr
have ?execs ′ /= [] unfolding next-execs-def by auto

from realistic[unfolded realistic-executions-ind-def ,THEN spec,where x=d] d-is-curr thread-not-empty
obtain n aseq ′where witness∶ n ≤ length aseq ′ ∧ aseq ′ ∈ AS-set ∧ hd(execs d) = lastn n aseq ′

EURO-MILS D31.1 Page 38 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

unfolding realistic-AS-partial-def by (cases execs d,auto)
from d-is-curr this subset as-defs have ?thesis

unfolding realistic-AS-partial-def
by auto

}
moreover
{

let ?ct= execs (current s)
let ?execs ′ = tl ?ct
let ?a ′ = None
assume c-aborting∶ let (a,aseqs ′,s ′) = ?c in

(a,aseqs ′) = (?a ′, ?execs ′)
from na-def c-aborting d-is-curr

have as-defs∶ aseq = hd ?execs ′ ∧ aseqs = tl ?execs ′

unfolding next-execs-def by (auto)
from realistic[unfolded realistic-executions-ind-def ,THEN spec,where x=d] d-is-curr set-tl-is-subset[where

x=?execs ′]
have subset∶ set (tl ?execs ′) ⊆ AS-set
unfolding Let-def realistic-AS-partial-def
by (cases execs d,auto)

from na-def c-aborting d-is-curr
have ?execs ′ /= [] unfolding next-execs-def by auto

from empty-in-AS-set this
realistic[unfolded realistic-executions-ind-def ,THEN spec,where x=d] d-is-curr
have length (hd ?execs ′) ≤ length (hd ?execs ′) ∧ (hd ?execs ′) ∈ AS-set ∧ hd ?execs ′ = lastn (length (hd

?execs ′)) (hd ?execs ′)
unfolding lastn-def
by (cases execs (current s),auto)

from this subset as-defs have ?thesis
unfolding realistic-AS-partial-def
by auto

}
ultimately
show ?thesis
using control-spec[THEN spec,THEN spec,THEN spec,where x2=s and x1=current s and x=execs (current s)]

d-is-curr thread-not-empty
by (auto simp add∶ Let-def)

qed

The lemma that proves that the total run function is equivalent to the partial run function, i.e., that in
this refinement the case of the run function where the precondition is False will never occur.
lemma run-total-equals-run∶

assumes realistic-exec∶ realistic-executions execs
and invariant∶ invariant s

shows strict-equal (run n (Some s) execs) (run-total n s execs)
proof−
{

fix n ms s execs
have strict-equal ms s ∧ realistic-executions-ind execs ∧ precondition-ind s execs Ð→ strict-equal (run n ms

execs) (run-total n s execs)
proof (induct n ms execs arbitrary∶ s rule∶ run.induct)
case (1 s execs sa)

show ?case by auto
next
case (2 n execs s)

show ?case unfolding strict-equal-def by auto
next
case (3 n s execs sa)

EURO-MILS D31.1 Page 39 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

assume interrupt∶ interrupt (Suc n)
assume IH∶ (⋀sa. strict-equal (Some (cswitch (Suc n) s)) sa ∧ realistic-executions-ind execs ∧ precondition-ind

sa execs Ð→
strict-equal (run n (Some (cswitch (Suc n) s)) execs) (run-total n sa execs))

{
assume equal-s-sa∶ strict-equal (Some s) sa
assume realistic∶ realistic-executions-ind execs
assume inv-sa∶ precondition-ind sa execs
have inv-nsa∶ precondition-ind (cswitch (Suc n) sa) execs
proof−
{

fix d
have fst (control (cswitch (Suc n) sa) d (execs d)) ⇀ AS-precondition (cswitch (Suc n) sa) d

using next-action-after-cswitch inv-sa[unfolded precondition-ind-def ,THEN conjunct2,THEN spec,where
x=d]

precondition-after-cswitch
unfolding Let-def B-def precondition-ind-def
by(cases fst (control (cswitch (Suc n) sa) d (execs d)),auto)

}
thus ?thesis using inv-sa invariant-after-cswitch unfolding precondition-ind-def by auto

qed
from equal-s-sa realistic inv-nsa inv-sa IH[where sa=cswitch (Suc n) sa]

have equal-ns-nt∶ strict-equal (run n (Some (cswitch (Suc n) s)) execs) (run-total n (cswitch (Suc n) sa)
execs)

unfolding strict-equal-def by(auto)
}
from this interrupt show ?case by auto

next
case (4 n execs s sa)

assume not-interrupt∶ ¬interrupt (Suc n)
assume thread-empty∶ thread-empty(execs (current s))
assume IH∶ (⋀sa. strict-equal (Some s) sa ∧ realistic-executions-ind execs ∧ precondition-ind sa execs Ð→

strict-equal (run n (Some s) execs) (run-total n sa execs))
have current-s-sa∶ strict-equal (Some s) sa Ð→ current s = current sa unfolding strict-equal-def by auto
{

assume equal-s-sa∶ strict-equal (Some s) sa
assume realistic∶ realistic-executions-ind execs
assume inv-sa∶ precondition-ind sa execs
from equal-s-sa realistic inv-sa IH[where sa=sa]
have equal-ns-nt∶ strict-equal (run n (Some s) execs) (run-total n sa execs)
unfolding strict-equal-def by(auto)

}
from this current-s-sa thread-empty not-interrupt show ?case by auto

next
case (5 n execs s sa)

assume not-interrupt∶ ¬interrupt (Suc n)
assume thread-not-empty∶ ¬thread-empty(execs (current s))
assume not-prec∶ ¬ precondition (next-state s execs) (next-action s execs)
— In locale ISK, the precondition can be proven to hold at all times. This case cannot happen, and we can prove

False.
{

assume equal-s-sa∶ strict-equal (Some s) sa
assume realistic∶ realistic-executions-ind execs
assume inv-sa∶ precondition-ind sa execs
from equal-s-sa have s-sa∶ s = sa unfolding strict-equal-def by auto
from inv-sa have
next-action sa execs ⇀ AS-precondition sa (current sa)

EURO-MILS D31.1 Page 40 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

unfolding precondition-ind-def B-def next-action-def
by (cases next-action sa execs,auto)

from this next-state-precondition
have next-action sa execs⇀ AS-precondition (next-state sa execs) (current sa)
unfolding precondition-ind-def B-def
by (cases next-action sa execs,auto)

from inv-sa this s-sa next-state-invariant current-next-state
have prec-s∶ precondition (next-state s execs) (next-action s execs)
unfolding precondition-ind-def kprecondition-def precondition-def B-def
by (cases next-action sa execs,auto)

from this not-prec have False by auto
}
thus ?case by auto

next
case (6 n execs s sa)

assume not-interrupt∶ ¬interrupt (Suc n)
assume thread-not-empty∶ ¬thread-empty(execs (current s))
assume prec∶ precondition (next-state s execs) (next-action s execs)
assume IH∶ (⋀sa. strict-equal (Some (step (next-state s execs) (next-action s execs))) sa ∧

realistic-executions-ind (next-execs s execs) ∧ precondition-ind sa (next-execs s execs) Ð→
strict-equal (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs)) (run-total

n sa (next-execs s execs)))
have current-s-sa∶ strict-equal (Some s) saÐ→ current s = current sa unfolding strict-equal-def by auto
{

assume equal-s-sa∶ strict-equal (Some s) sa
assume realistic∶ realistic-executions-ind execs
assume inv-sa∶ precondition-ind sa execs

from equal-s-sa have s-sa∶ s = sa unfolding strict-equal-def by auto

let ?a = next-action s execs
let ?ns = step (next-state s execs) ?a
let ?na = next-execs s execs
let ?c = control s (current s) (execs (current s))

have equal-ns-nsa∶ strict-equal (Some ?ns) ?ns unfolding strict-equal-def by auto
from inv-sa equal-s-sa have inv-s∶ invariant s unfolding strict-equal-def precondition-ind-def by auto

— Two things are proven inductive. First, the assumptions that the execution is realistic (statement realistic-na).
This proof uses lemma next-execution-is-realistic-partial. Secondly, the precondition: if the precondition holds for
the current action, then it holds for the next action (statement invariant-na).

have realistic-na∶ realistic-executions-ind ?na
proof−
{

fix d
have case ?na d of []⇒ True ∣ aseq # aseqs⇒ realistic-AS-partial aseq ∧ set aseqs ⊆ AS-set
proof(cases ?na d,simp,rename-tac aseq aseqs,simp,cases d = current s)
case False

fix aseq aseqs
assume next-execs s execs d = aseq # aseqs
from False this realistic[unfolded realistic-executions-ind-def ,THEN spec,where x=d]

show realistic-AS-partial aseq ∧ set aseqs ⊆ AS-set
unfolding next-execs-def by simp

next
case True

fix aseq aseqs
assume na-def ∶ next-execs s execs d = aseq # aseqs

EURO-MILS D31.1 Page 41 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

from next-execution-is-realistic-partial na-def True realistic thread-not-empty
show realistic-AS-partial aseq ∧ set aseqs ⊆ AS-set by blast

qed
}
thus ?thesis unfolding realistic-executions-ind-def by auto

qed
have invariant-na∶ precondition-ind ?ns ?na
proof−

from spec-of-invariant inv-sa next-state-invariant s-sa have inv-ns∶ invariant ?ns
unfolding precondition-ind-def step-def
by (cases next-action sa execs,auto)

have ∀d. fst (control ?ns d (?na d)) ⇀ AS-precondition ?ns d
proof−
{

fix d
{
let ?a ′ = fst (control ?ns d (?na d))
assume snd-action-not-none∶ ?a ′ /= None
have AS-precondition ?ns d (the ?a ′)
proof (cases d = current s)
case True
{

have ?thesis
proof (cases ?a)
case (Some a)
— Assuming that the current domain executes some action a, and assuming that the action a’ after that is

not None (statement snd-action-not-none), we prove that the precondition is inductive, i.e., it will hold for a’. Two
cases arise: either action a is delayed (case waiting) or not (case executing).

show ?thesis
proof(cases ?na d = execs (current s) rule ∶case-split[case-names waiting executing])

case executing — The kernel is executing two consecutive actions a and a’. We show that [a,a’] is a
subsequence in some action in AS-set. The PO’s ensure that the precondition is inductive.

from executing True Some control-spec[THEN spec,THEN spec,THEN spec,where x2=s and x1=d and
x=execs d]

have a-def ∶ a = hd (hd (execs (current s))) ∧ ?na d = (tl (hd (execs (current s))))#(tl (execs
(current s)))

unfolding next-action-def next-execs-def Let-def
by(auto)

from a-def True snd-action-not-none control-spec[THEN spec,THEN spec,THEN spec,where x2=?ns
and x1=d and x=?na d]

second-elt-is-hd-tl[where x= hd (execs (current s)) and a=hd(tl(hd (execs (current s)))) and x ′=tl
(tl(hd (execs (current s))))]

have na-def ∶ the ?a ′ = (hd (execs (current s)))!1
unfolding next-execs-def
by(auto)

from Some realistic[unfolded realistic-executions-ind-def ,THEN spec,where x=d] True thread-not-empty
obtain n aseq ′where witness∶ n ≤ length aseq ′ ∧ aseq ′ ∈ AS-set ∧ hd(execs d) = lastn n aseq ′

unfolding realistic-AS-partial-def by (cases execs d,auto)
from True executing length-lt-2-implies-tl-empty[where x=hd (execs (current s))]

Some control-spec[THEN spec,THEN spec,THEN spec,where x2=s and x1=d and x=execs d]
snd-action-not-none control-spec[THEN spec,THEN spec,THEN spec,where x2=?ns and x1=d and

x=?na d]
have in-action-sequence∶ length (hd (execs (current s))) ≥ 2
unfolding next-action-def next-execs-def
by auto

from this witness consecutive-is-sub-seq[where a=a and b=the ?a ′ and n=n and y=aseq ′ and x=tl (tl
(hd (execs (current s))))]

EURO-MILS D31.1 Page 42 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

a-def na-def True in-action-sequence
x-is-hd-snd-tl[where x=hd (execs (current s))]
have 1∶ ∃ aseq ′ ∈ AS-set . is-sub-seq a (the ?a ′) aseq ′

by(auto)
from True Some inv-sa[unfolded precondition-ind-def ,THEN conjunct2,THEN spec,where x=current

s] s-sa
have 2∶ AS-precondition s (current s) a
unfolding strict-equal-def next-action-def B-def by auto

from executing True Some control-spec[THEN spec,THEN spec,THEN spec,where x2=s and x1=d and
x=execs d]

have not-aborting∶ ¬aborting (next-state s execs) (current s) (the ?a)
unfolding next-action-def next-state-def next-execs-def
by auto

from executing True Some control-spec[THEN spec,THEN spec,THEN spec,where x2=s and x1=d and
x=execs d]

have not-waiting∶ ¬waiting (next-state s execs) (current s) (the ?a)
unfolding next-action-def next-state-def next-execs-def
by auto

from True this
1 2 inv-s
sub-seq-in-prefixes[where X=AS-set] Some next-state-invariant
current-next-state[THEN spec,THEN spec,where x1=s and x=execs]

AS-prec-after-step[THEN spec,THEN spec,THEN spec,where x2=next-state s execs and x1=a and
x=the ?a ′]

next-state-precondition not-aborting not-waiting
show ?thesis
unfolding step-def
by auto

next
case waiting — The kernel is delaying action a. Thus the action after a, which is a’, is equal to a.

from tl-hd-x-not-tl-x[where x=execs d] True waiting control-spec[THEN spec,THEN spec,THEN
spec,where x2=s and x1=d and x=execs d] Some

have a-def ∶ ?na d = execs (current s) ∧ next-state s execs = s ∧ waiting s d (the ?a)
unfolding next-action-def next-execs-def next-state-def
by(auto)

from Some waiting a-def True snd-action-not-none control-spec[THEN spec,THEN spec,THEN
spec,where x2=?ns and x1=d and x=?na d]

have na-def ∶ the ?a ′ = hd (hd (execs (current s)))
unfolding next-action-def next-execs-def
by(auto)

from spec-of-waiting a-def True
have no-step∶ step s ?a = s unfolding step-def by (cases next-action s execs,auto)

from no-step Some True a-def
inv-sa[unfolded precondition-ind-def ,THEN conjunct2,THEN spec,where x=current s] s-sa

have 2∶ AS-precondition s (current s) (the ?a ′)
unfolding next-action-def B-def
by(auto)

from a-def na-def this True Some no-step
show ?thesis
unfolding step-def
by(auto)

qed
next
case None
— Assuming that the current domain does not execute an action, and assuming that the action a’ after that

is not None (statement snd-action-not-none), we prove that the precondition is inductive, i.e., it will hold for a’.
This holds, since the control mechanism will ensure that action a’ is the start of a new action sequence in AS-set.

EURO-MILS D31.1 Page 43 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

from None True snd-action-not-none control-spec[THEN spec,THEN spec,THEN spec,where x2=?ns
and x1=d and x=?na d]

control-spec[THEN spec,THEN spec,THEN spec,where x2=s and x1=d and x=execs d]
have na-def ∶ the ?a ′ = hd (hd (tl (execs (current s)))) ∧ ?na d = tl (execs (current s))
unfolding next-action-def next-execs-def
by(auto)
from True None snd-action-not-none control-spec[THEN spec,THEN spec,THEN spec,where x2=?ns

and x1=d and x=?na d]
this

have 1∶ tl (execs (current s)) /= [] ∧ hd (tl (execs (current s))) /= []
by auto

from this realistic[unfolded realistic-executions-ind-def ,THEN spec,where x=d] True thread-not-empty
have hd (tl (execs (current s))) ∈ AS-set
by (cases execs d,auto)

from True snd-action-not-none this
inv-ns this na-def 1
AS-prec-first-action[THEN spec,THEN spec,THEN spec,where x2=?ns and x=hd (tl (execs (current

s))) and x1=d]
show ?thesis by auto

qed
}
thus ?thesis

using control-spec[THEN spec,THEN spec,THEN spec,where x2=?ns and x1=current s and x=?na
(current s)]

thread-not-empty True snd-action-not-none
by (auto simp add∶ Let-def)

next
case False

from False have equal-na-a∶ ?na d = execs d
unfolding next-execs-def by auto

from this False current-next-state next-action-after-step
have ?a ′ = fst (control (next-state s execs) d (next-execs s execs d))
unfolding next-action-def by auto

from inv-sa[unfolded precondition-ind-def ,THEN conjunct2,THEN spec,where x=d] s-sa equal-na-a this
next-action-after-next-state[THEN spec,THEN spec,THEN spec,where x=d and x2=s and x1=execs]
snd-action-not-none False

have AS-precondition s d (the ?a ′)
unfolding precondition-ind-def next-action-def B-def by (cases fst (control sa d (execs d)),auto)

from equal-na-a False this next-state-precondition current-next-state
AS-prec-dom-independent[THEN spec,THEN spec,THEN spec,THEN spec,where x3=next-state s execs

and x2=d and x=the ?a and x1=the ?a ′]
show ?thesis
unfolding step-def
by (cases next-action s execs,auto)

qed
}
hence fst (control ?ns d (?na d)) ⇀ AS-precondition ?ns d unfolding B-def

by (cases fst (control ?ns d (?na d)),auto)
}
thus ?thesis by auto

qed
from this inv-ns show ?thesis

unfolding precondition-ind-def B-def Let-def
by (auto)

qed
from equal-ns-nsa realistic-na invariant-na s-sa IH[where sa=?ns]

EURO-MILS D31.1 Page 44 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

have equal-ns-nt∶ strict-equal (run n (Some ?ns) ?na) (run-total n (step (next-state sa execs) (next-action
sa execs)) (next-execs sa execs))

by(auto)
}
from this current-s-sa thread-not-empty not-interrupt prec show ?case by auto

qed
}
hence thm-inductive∶ ∀ m s execs n . strict-equal m s ∧ realistic-executions-ind execs ∧ precondition-ind s execs
Ð→ strict-equal (run n m execs) (run-total n s execs) by blast
have 1∶ strict-equal (Some s) s unfolding strict-equal-def by simp
have 2∶ realistic-executions-ind execs

proof−
{

fix d
have case execs d of []⇒ True ∣ aseq # aseqs⇒ realistic-AS-partial aseq ∧ set aseqs ⊆ AS-set
proof(cases execs d,simp)
case (Cons aseq aseqs)

from Cons realistic-exec[unfolded realistic-executions-def ,THEN spec,where x=d]
have 0∶ length aseq ≤ length aseq ∧ aseq ∈ AS-set ∧ aseq = lastn (length aseq) aseq
unfolding lastn-def realistic-execution-def by auto

hence 1∶ realistic-AS-partial aseq unfolding realistic-AS-partial-def by auto
from Cons realistic-exec[unfolded realistic-executions-def ,THEN spec,where x=d]

have 2∶ set aseqs ⊆ AS-set
unfolding realistic-execution-def by auto

from Cons 1 2 show ?thesis by auto
qed
}
thus ?thesis unfolding realistic-executions-ind-def by auto
qed

have 3∶ precondition-ind s execs
proof−
{

fix d
{
assume not-empty∶ fst (control s d (execs d)) /= None
from not-empty realistic-exec[unfolded realistic-executions-def ,THEN spec,where x=d]

have current-aseq-is-realistic∶ hd (execs d) ∈ AS-set
using control-spec[THEN spec,THEN spec,THEN spec,where x=execs d and x1=d and x2=s]
unfolding realistic-execution-def by(cases execs d,auto)
from not-empty current-aseq-is-realistic invariant AS-prec-first-action[THEN spec,THEN spec,THEN spec,

where x2=s and x1=d and x=hd (execs d)]
have AS-precondition s d (the (fst (control s d (execs d))))
using control-spec[THEN spec,THEN spec,THEN spec,where x=execs d and x1=d and x2=s]
by auto

}
hence fst (control s d (execs d)) ⇀ AS-precondition s d

unfolding B-def
by (cases fst (control s d (execs d)),auto)

}
from this invariant show ?thesis unfolding precondition-ind-def by auto

qed
from thm-inductive 1 2 3 show ?thesis by auto
qed

Theorem unwinding implies isecure gives security for all realistic executions. For unrealistic exe-
cutions, it holds vacuously and therefore does not tell us anything. In order to prove security for this
refinement (i.e., for function run total), we have to prove that purging yields realistic runs.

EURO-MILS D31.1 Page 45 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

lemma realistic-purge∶
shows ∀ execs d . realistic-executions execsÐ→ realistic-executions (purge execs d)

proof−
{

fix execs d
assume realistic-executions execs
hence realistic-executions (purge execs d)

using someI[where P=realistic-execution and x=execs d]
unfolding realistic-executions-def purge-def by(simp)

}
thus ?thesis by auto
qed

lemma remove-gateway-comm-subset∶
shows set (remove-gateway-communications d exec) ⊆ set exec ∪ {[]}
by(induct exec,auto)

lemma realistic-ipurge-l∶
shows ∀ execs d . realistic-executions execsÐ→ realistic-executions (ipurge-l execs d)

proof−
{

fix execs d
assume 1∶ realistic-executions execs
from empty-in-AS-set remove-gateway-comm-subset[where d=d and exec=execs d] 1 have realistic-executions

(ipurge-l execs d)
unfolding realistic-execution-def realistic-executions-def ipurge-l-def by(auto)

}
thus ?thesis by auto
qed

lemma realistic-ipurge-r∶
shows ∀ execs d . realistic-executions execsÐ→ realistic-executions (ipurge-r execs d)

proof−
{

fix execs d
assume 1∶ realistic-executions execs
from empty-in-AS-set remove-gateway-comm-subset[where d=d and exec=execs d] 1 have realistic-executions

(ipurge-r execs d)
using someI[where P=λ x . realistic-execution x and x=execs d]
unfolding realistic-execution-def realistic-executions-def ipurge-r-def by(auto)

}
thus ?thesis by auto
qed

We now have sufficient lemma’s to prove security for run total. The definition of security is similar
to that in Section 3.2. It now assumes that the executions are realistic and concerns function run total
instead of function run.

definition NI-unrelated-total∶∶bool
where NI-unrelated-total
≡ ∀ execs a n . realistic-executions execsÐ→

(let s-f = run-total n s0 execs in
output-f s-f a = output-f (run-total n s0 (purge execs (current s-f))) a
∧ current s-f = current (run-total n s0 (purge execs (current s-f))))

definition NI-indirect-sources-total∶∶bool
where NI-indirect-sources-total
≡ ∀ execs a n. realistic-executions execsÐ→

EURO-MILS D31.1 Page 46 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

(let s-f = run-total n s0 execs in
output-f (run-total n s0 (ipurge-l execs (current s-f))) a =
output-f (run-total n s0 (ipurge-r execs (current s-f))) a)

definition isecure-total∶∶bool
where isecure-total ≡ NI-unrelated-total ∧ NI-indirect-sources-total

theorem unwinding-implies-isecure-total∶
shows isecure-total
proof−
from assms unwinding-implies-isecure have secure-partial∶ NI-unrelated unfolding isecure-def by blast
from assms unwinding-implies-isecure have isecure1-partial∶ NI-indirect-sources unfolding isecure-def by blast

have NI-unrelated-total∶ NI-unrelated-total
proof−
{
fix execs a n
assume realistic∶ realistic-executions execs
from assms invariant-s0 realistic run-total-equals-run[where n=n and s=s0 and execs=execs]
have 1∶ strict-equal (run n (Some s0) execs) (run-total n s0 execs) by auto

have let s-f = run-total n s0 execs in output-f s-f a = output-f (run-total n s0 (purge execs (current s-f))) a ∧
current s-f = current (run-total n s0 (purge execs (current s-f)))

proof (cases run n (Some s0) execs)
case None

thus ?thesis using 1 unfolding NI-unrelated-total-def strict-equal-def by auto
next
case (Some s-f)

from realistic-purge assms invariant-s0 realistic run-total-equals-run[where n=n and s=s0 and execs=purge
execs (current s-f)]

have 2∶ strict-equal (run n (Some s0) (purge execs (current s-f))) (run-total n s0 (purge execs (current
s-f)))

by auto
show ?thesis proof(cases run n (Some s0) (purge execs (current s-f)))
case None

from 2 None show ?thesis using 2 unfolding NI-unrelated-total-def strict-equal-def by auto
next
case (Some s-f2)

from ⟨run n (Some s0) execs = Some s-f ⟩ Some 1 2 secure-partial[unfolded NI-unrelated-def ,THEN
spec,THEN spec,THEN spec,where x=n and x2=execs]

show ?thesis
unfolding strict-equal-def NI-unrelated-def
by(simp add∶ Let-def B-def B2-def)

qed
qed
}
thus ?thesis unfolding NI-unrelated-total-def by auto

qed
have NI-indirect-sources-total∶ NI-indirect-sources-total
proof−
{
fix execs a n
assume realistic∶ realistic-executions execs
from assms invariant-s0 realistic run-total-equals-run[where n=n and s=s0 and execs=execs]
have 1∶ strict-equal (run n (Some s0) execs) (run-total n s0 execs) by auto

have let s-f = run-total n s0 execs in output-f (run-total n s0 (ipurge-l execs (current s-f))) a = output-f

EURO-MILS D31.1 Page 47 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

(run-total n s0 (ipurge-r execs (current s-f))) a
proof (cases run n (Some s0) execs)
case None

thus ?thesis using 1 unfolding NI-unrelated-total-def strict-equal-def by auto
next
case (Some s-f)
from realistic-ipurge-l assms invariant-s0 realistic run-total-equals-run[where n=n and s=s0 and execs=ipurge-l

execs (current s-f)]
have 2∶ strict-equal (run n (Some s0) (ipurge-l execs (current s-f))) (run-total n s0 (ipurge-l execs (current

s-f)))
by auto

from realistic-ipurge-r assms invariant-s0 realistic run-total-equals-run[where n=n and s=s0 and execs=ipurge-r
execs (current s-f)]

have 3∶ strict-equal (run n (Some s0) (ipurge-r execs (current s-f))) (run-total n s0 (ipurge-r execs (current
s-f)))

by auto

show ?thesis proof(cases run n (Some s0) (ipurge-l execs (current s-f)))
case None

from 2 None show ?thesis using 2 unfolding NI-unrelated-total-def strict-equal-def by auto
next
case (Some s-ipurge-l)

show ?thesis
proof(cases run n (Some s0) (ipurge-r execs (current s-f)))
case None

from 3 None show ?thesis using 2 unfolding NI-unrelated-total-def strict-equal-def by auto
next
case (Some s-ipurge-r)
from ⟨run n (Some s0) execs = Some s-f ⟩ ⟨run n (Some s0) (ipurge-l execs (current s-f)) = Some s-ipurge-l⟩

Some 1 2 3 isecure1-partial[unfolded NI-indirect-sources-def ,THEN spec,THEN spec,THEN spec,where
x=n and x2=execs]

show ?thesis
unfolding strict-equal-def NI-unrelated-def
by(simp add∶ Let-def B-def B2-def)

qed
qed

qed
}
thus ?thesis unfolding NI-indirect-sources-total-def by auto

qed
from NI-unrelated-total NI-indirect-sources-total show ?thesis unfolding isecure-total-def by auto

qed

end
end

3.4 CISK (Controlled Interruptible Separation Kernel)
theory CISK

imports ISK
begin

This section presents a generic model of a Controlled Interruptible Separation Kernel (CISK). It
formulates security, i.e., intransitive noninterference. For a presentation of this model, see Section 2
of [31].

First, a locale is defined that defines all generic functions and all proof obligations (see Section 2.3
of [31]).

EURO-MILS D31.1 Page 48 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

locale Controllable-Interruptible-Separation-Kernel = — CISK
fixes kstep ∶∶ ′state-t⇒ ′action-t⇒ ′state-t — Executes one atomic kernel action

and output-f ∶∶ ′state-t⇒ ′action-t⇒ ′output-t — Returns the observable behavior
and s0 ∶∶ ′state-t — The initial state
and current ∶∶ ′state-t => ′dom-t — Returns the currently active domain
and cswitch ∶∶ time-t⇒ ′state-t⇒ ′state-t — Performs a context switch
and interrupt ∶∶ time-t⇒ bool — Returns t iff an interrupt occurs in the given state at the given time
and kinvolved ∶∶ ′action-t⇒ ′dom-t set — Returns the set of domains that are involved in the given action
and ifp ∶∶ ′dom-t⇒ ′dom-t⇒ bool — The security policy.
and vpeq ∶∶ ′dom-t⇒ ′state-t⇒ ′state-t⇒ bool — View partitioning equivalence
and AS-set ∶∶ (′action-t list) set — Returns a set of valid action sequences, i.e., the attack surface
and invariant ∶∶ ′state-t⇒ bool — Returns an inductive state-invariant
and AS-precondition ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t⇒ bool — Returns the preconditions under which the given

action can be executed.
and aborting ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t⇒ bool — Returns true iff the action is aborted.
and waiting ∶∶ ′state-t⇒ ′dom-t⇒ ′action-t⇒ bool — Returns true iff execution of the given action is delayed.
and set-error-code ∶∶ ′state-t⇒ ′action-t⇒ ′state-t — Sets an error code when actions are aborted.

assumes vpeq-transitive∶ ∀ a b c u. (vpeq u a b ∧ vpeq u b c) Ð→ vpeq u a c
and vpeq-symmetric∶ ∀ a b u. vpeq u a b Ð→ vpeq u b a
and vpeq-reflexive∶ ∀ a u. vpeq u a a
and ifp-reflexive∶ ∀ u . ifp u u
and weakly-step-consistent∶ ∀ s t u a. vpeq u s t ∧ vpeq (current s) s t ∧ invariant s ∧ AS-precondition s (current

s) a ∧ invariant t ∧ AS-precondition t (current t) a ∧ current s = current t Ð→ vpeq u (kstep s a) (kstep t a)
and locally-respects∶ ∀ a s u. ¬ifp (current s) u ∧ invariant s ∧ AS-precondition s (current s) a Ð→ vpeq u s

(kstep s a)
and output-consistent∶ ∀ a s t. vpeq (current s) s t ∧ current s = current t Ð→ (output-f s a) = (output-f t a)
and step-atomicity∶ ∀ s a . current (kstep s a) = current s
and cswitch-independent-of-state∶ ∀ n s t . current s = current t Ð→ current (cswitch n s) = current (cswitch n

t)
and cswitch-consistency∶ ∀ u s t n . vpeq u s t Ð→ vpeq u (cswitch n s) (cswitch n t)
and empty-in-AS-set∶ [] ∈ AS-set
and invariant-s0∶ invariant s0
and invariant-after-cswitch∶ ∀ s n . invariant s Ð→ invariant (cswitch n s)
and precondition-after-cswitch∶ ∀ s d n a. AS-precondition s d a Ð→ AS-precondition (cswitch n s) d a
and AS-prec-first-action∶ ∀ s d aseq . invariant s ∧ aseq ∈ AS-set ∧ aseq /= []Ð→ AS-precondition s d (hd aseq)
and AS-prec-after-step∶ ∀ s a a ′ . (∃ aseq ∈ AS-set . is-sub-seq a a ′ aseq) ∧ invariant s ∧ AS-precondition s

(current s) a ∧ ¬aborting s (current s) a ∧ ¬ waiting s (current s) aÐ→ AS-precondition (kstep s a) (current s)
a ′

and AS-prec-dom-independent∶ ∀ s d a a ′ . current s /= d ∧ AS-precondition s d a Ð→ AS-precondition (kstep s
a ′) d a

and spec-of-invariant∶ ∀ s a . invariant s Ð→ invariant (kstep s a)
and aborting-switch-independent∶ ∀ n s . aborting (cswitch n s) = aborting s
and aborting-error-update∶ ∀ s d a ′ a . current s /= d ∧ aborting s d a Ð→ aborting (set-error-code s a ′) d a
and aborting-after-step∶ ∀ s a d . current s /= d Ð→ aborting (kstep s a) d = aborting s d
and aborting-consistent∶ ∀ s t u . vpeq u s t Ð→ aborting s u = aborting t u
and waiting-switch-independent∶ ∀ n s . waiting (cswitch n s) = waiting s
and waiting-error-update∶ ∀ s d a ′ a . current s /= d ∧ waiting s d a Ð→ waiting (set-error-code s a ′) d a
and waiting-consistent∶ ∀ s t u a . vpeq (current s) s t ∧ (∀ d ∈ kinvolved a . vpeq d s t) ∧ vpeq u s t Ð→ waiting

s u a = waiting t u a
and spec-of-waiting∶ ∀ s a . waiting s (current s) a Ð→ kstep s a = s
and set-error-consistent∶ ∀ s t u a . vpeq u s t Ð→ vpeq u (set-error-code s a) (set-error-code t a)
and set-error-locally-respects∶ ∀ s u a . ¬ifp (current s) u Ð→ vpeq u s (set-error-code s a)
and current-set-error-code∶ ∀ s a . current (set-error-code s a) = current s

and precondition-after-set-error-code∶ ∀ s d a a ′. AS-precondition s d a ∧ aborting s (current s) a ′ Ð→
AS-precondition (set-error-code s a ′) d a

and invariant-after-set-error-code∶ ∀ s a . invariant s Ð→ invariant (set-error-code s a)
and involved-ifp∶ ∀ s a . ∀ d ∈ (kinvolved a) . AS-precondition s (current s) a Ð→ ifp d (current s)

EURO-MILS D31.1 Page 49 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

begin

3.4.1 Execution semantics

Control is based on generic functions aborting, waiting and set error code. Function aborting decides
whether a certain action is aborting, given its domain and the state. If so, then function set error code
will be used to update the state, possibly communicating to other domains that an action has been
aborted. Function waiting can delay the execution of an action. This behavior is implemented in function
CISK control.

function CISK-control ∶∶ ′state-t ⇒ ′dom-t ⇒ ′action-t execution ⇒ (′action-t option × ′action-t execution ×
′state-t)
where CISK-control s d [] = (None,[],s) — The thread is empty

∣ CISK-control s d ([]#[]) = (None,[],s) — The current action sequence has been finished and the thread
has no next action sequences to execute

∣ CISK-control s d ([]#(as ′#execs ′)) = (None,as ′#execs ′,s) — The current action sequence has been finished.
Skip to the next sequence

∣ CISK-control s d ((a#as)#execs ′) = (if aborting s d a then
(None, execs ′,set-error-code s a)

else if waiting s d a then
(Some a, (a#as)#execs ′,s)

else
(Some a, as#execs ′,s)) — Executing an action sequence

by pat-completeness auto
termination by lexicographic-order

Function run defines the execution semantics. This function is presented in [31] by pseudo code (see
Algorithm 1). Before defining the run function, we define accessor functions for the control mechanism.
Functions next action, next execs and next state correspond to “control.a”, “control.x” and “control.s”
in [31].

abbreviation next-action∶∶ ′state-t⇒ (′dom-t⇒ ′action-t execution)⇒ ′action-t option
where next-action ≡ Kernel.next-action current CISK-control
abbreviation next-execs∶∶ ′state-t⇒ (′dom-t⇒ ′action-t execution)⇒ (′dom-t⇒ ′action-t execution)
where next-execs ≡ Kernel.next-execs current CISK-control
abbreviation next-state∶∶ ′state-t⇒ (′dom-t⇒ ′action-t execution)⇒ ′state-t
where next-state ≡ Kernel.next-state current CISK-control

A thread is empty iff either it has no further action sequences to execute, or when the current action
sequence is finished and there are no further action sequences to execute.

abbreviation thread-empty∶∶ ′action-t execution⇒ bool
where thread-empty exec ≡ exec = [] ∨ exec = [[]]

The following function defines the execution semantics of CISK, using function CISK control.

function run ∶∶ time-t⇒ ′state-t⇒ (′dom-t⇒ ′action-t execution)⇒ ′state-t
where run 0 s execs = s
∣ interrupt (Suc n)Ô⇒ run (Suc n) s execs = run n (cswitch (Suc n) s) execs
∣ ¬interrupt (Suc n)Ô⇒ thread-empty(execs (current s))Ô⇒ run (Suc n) s execs = run n s execs
∣ ¬interrupt (Suc n)Ô⇒ ¬thread-empty(execs (current s))Ô⇒

run (Suc n) s execs = (let control-a = next-action s execs;
control-s = next-state s execs;
control-x = next-execs s execs in

case control-a of None⇒ run n control-s control-x
∣ (Some a)⇒ run n (kstep control-s a) control-x)

using not0-implies-Suc by (metis prod-cases3,auto)
termination by lexicographic-order

EURO-MILS D31.1 Page 50 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

3.4.2 Formulations of security

The definitions of security as presented in Section 2.2 of [31].

abbreviation kprecondition
where kprecondition s a ≡ invariant s ∧ AS-precondition s (current s) a

definition realistic-execution
where realistic-execution aseq ≡ set aseq ⊆ AS-set
definition realistic-executions ∶∶ (′dom-t⇒ ′action-t execution)⇒ bool
where realistic-executions execs ≡ ∀d. realistic-execution (execs d)
abbreviation involved where involved ≡ Kernel.involved kinvolved
abbreviation step where step ≡ Kernel.step kstep
abbreviation purge where purge ≡ Separation-Kernel.purge realistic-execution ifp
abbreviation ipurge-l where ipurge-l ≡ Separation-Kernel.ipurge-l kinvolved ifp
abbreviation ipurge-r where ipurge-r ≡ Separation-Kernel.ipurge-r realistic-execution kinvolved ifp

definition NI-unrelated∶∶bool
where NI-unrelated
≡ ∀ execs a n . realistic-executions execsÐ→

(let s-f = run n s0 execs in
output-f s-f a = output-f (run n s0 (purge execs (current s-f))) a)

definition NI-indirect-sources∶∶bool
where NI-indirect-sources
≡ ∀ execs a n. realistic-executions execsÐ→

(let s-f = run n s0 execs in
output-f (run n s0 (ipurge-l execs (current s-f))) a =
output-f (run n s0 (ipurge-r execs (current s-f))) a)

definition isecure∶∶bool
where isecure ≡ NI-unrelated ∧ NI-indirect-sources

3.4.3 Proofs

The final theorem is unwinding implies isecure CISK. This theorem shows that any interpretation of
locale CISK is secure.

To prove this theorem, the refinement framework is used. CISK is a refinement of ISK, as the
only idfference is the control function. In ISK, this function is a generic function called control, in
CISK it is interpreted in function CISK control. It is proven that function CISK control satisfies all the
proof obligations concerning generic function control. In other words, CISK control is proven to be an
interpretation of control. Therefore, all theorems on run total apply to the run function of CISK as well.

lemma next-action-consistent∶
shows ∀ s t execs . vpeq (current s) s t ∧ (∀ d ∈ involved (next-action s execs) . vpeq d s t) ∧ current s = current
t Ð→ next-action s execs = next-action t execs
proof−
{

fix s t execs
assume vpeq∶ vpeq (current s) s t
assume vpeq-involved∶ ∀ d ∈ involved (next-action s execs) . vpeq d s t
assume current-s-t∶ current s = current t
from aborting-consistent current-s-t vpeq
have aborting t (current s) = aborting s (current s) by auto

from current-s-t this waiting-consistent vpeq-involved
have next-action s execs = next-action t execs
unfolding Kernel.next-action-def
by(cases (s,(current s),execs (current s)) rule∶ CISK-control.cases,auto)

}
thus ?thesis by auto
qed

EURO-MILS D31.1 Page 51 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

lemma next-execs-consistent∶
shows ∀ s t execs . vpeq (current s) s t ∧ (∀ d ∈ involved (next-action s execs) . vpeq d s t) ∧ current s = current
t Ð→ fst (snd (CISK-control s (current s) (execs (current s)))) = fst (snd (CISK-control t (current s) (execs
(current s))))
proof−
{

fix s t execs
assume vpeq∶ vpeq (current s) s t
assume vpeq-involved∶ ∀ d ∈ involved (next-action s execs) . vpeq d s t
assume current-s-t∶ current s = current t
from aborting-consistent current-s-t vpeq

have 1∶ aborting t (current s) = aborting s (current s) by auto
from 1 vpeq current-s-t vpeq-involved waiting-consistent[THEN spec,THEN spec,THEN spec,THEN spec,where

x3=s and x2=t and x1=current s and x=the (next-action s execs)]
have fst (snd (CISK-control s (current s) (execs (current s)))) = fst (snd (CISK-control t (current s) (execs

(current s))))
unfolding Kernel.next-action-def Kernel.involved-def
by(cases (s,(current s),execs (current s)) rule∶ CISK-control.cases,auto split add∶ split-if-asm)

}
thus ?thesis by auto
qed

lemma next-state-consistent∶
shows ∀ s t u execs . vpeq (current s) s t ∧ vpeq u s t ∧ current s = current t Ð→ vpeq u (next-state s execs)
(next-state t execs)
proof−
{

fix s t u execs
assume vpeq-s-t∶ vpeq (current s) s t ∧ vpeq u s t
assume current-s-t∶ current s = current t
from vpeq-s-t current-s-t

have vpeq u (next-state s execs) (next-state t execs)
unfolding Kernel.next-state-def
using aborting-consistent set-error-consistent
by(cases (s,(current s),execs (current s)) rule∶ CISK-control.cases,auto)

}
thus ?thesis by auto
qed

lemma current-next-state∶
shows ∀ s execs . current (next-state s execs) = current s
proof−
{

fix s execs
have current (next-state s execs) = current s

unfolding Kernel.next-state-def
using current-set-error-code
by(cases (s,(current s),execs (current s)) rule∶ CISK-control.cases,auto)

}
thus ?thesis by auto
qed

lemma locally-respects-next-state∶
shows ∀ s u execs. ¬ifp (current s) u Ð→ vpeq u s (next-state s execs)
proof−
{

EURO-MILS D31.1 Page 52 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

fix s u execs
assume ¬ifp (current s) u
hence vpeq u s (next-state s execs)

unfolding Kernel.next-state-def
using vpeq-reflexive set-error-locally-respects
by(cases (s,(current s),execs (current s)) rule∶ CISK-control.cases,auto)

}
thus ?thesis by auto
qed

lemma CISK-control-spec∶
shows ∀ s d aseqs.

case CISK-control s d aseqs of
(a, aseqs ′, s ′)⇒

thread-empty aseqs ∧ (a, aseqs ′) = (None, []) ∨
aseqs /= [] ∧ hd aseqs /= [] ∧ ¬ aborting s ′ d (the a) ∧ ¬ waiting s ′ d (the a) ∧ (a, aseqs ′) = (Some (hd (hd

aseqs)), tl (hd aseqs) # tl aseqs) ∨
aseqs /= [] ∧ hd aseqs /= [] ∧ waiting s ′ d (the a) ∧ (a, aseqs ′, s ′) = (Some (hd (hd aseqs)), aseqs, s) ∨ (a,

aseqs ′) = (None, tl aseqs)
proof−
{

fix s d aseqs
have case CISK-control s d aseqs of

(a, aseqs ′, s ′)⇒
thread-empty aseqs ∧ (a, aseqs ′) = (None, []) ∨
aseqs /= [] ∧ hd aseqs /= [] ∧ ¬ aborting s ′ d (the a) ∧ ¬ waiting s ′ d (the a) ∧ (a, aseqs ′) = (Some (hd (hd

aseqs)), tl (hd aseqs) # tl aseqs) ∨
aseqs /= [] ∧ hd aseqs /= [] ∧ waiting s ′ d (the a) ∧ (a, aseqs ′, s ′) = (Some (hd (hd aseqs)), aseqs, s) ∨ (a,

aseqs ′) = (None, tl aseqs)
by(cases (s,d,aseqs) rule∶ CISK-control.cases,auto)
}
thus ?thesis by auto
qed

lemma next-action-after-cswitch∶
shows ∀ s n d aseqs . fst (CISK-control (cswitch n s) d aseqs) = fst (CISK-control s d aseqs)
proof−
{

fix s n d aseqs
have fst (CISK-control (cswitch n s) d aseqs) = fst (CISK-control s d aseqs)
using aborting-switch-independent waiting-switch-independent
by(cases (s,d,aseqs) rule∶ CISK-control.cases,auto)
}
thus ?thesis by auto
qed

lemma next-action-after-next-state∶
shows∀ s execs d . current s /= dÐ→ fst (CISK-control (next-state s execs) d (execs d)) =None ∨ fst (CISK-control
(next-state s execs) d (execs d)) = fst (CISK-control s d (execs d))
proof−
{

fix s execs d aseqs
assume 1∶ current s /= d
have fst (CISK-control (next-state s execs) d aseqs) = None ∨ fst (CISK-control (next-state s execs) d aseqs) =

fst (CISK-control s d aseqs)
proof(cases (s,d,aseqs) rule∶ CISK-control.cases,simp,simp,simp)

EURO-MILS D31.1 Page 53 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

case (4 sa da a as execs ′)
thus ?thesis

unfolding Kernel.next-state-def
using aborting-error-update waiting-error-update 1
by(cases (sa,current sa,execs (current sa)) rule∶ CISK-control.cases,auto split∶ split-if-asm)

qed
}
thus ?thesis by auto
qed

lemma next-action-after-step∶
shows ∀ s a d aseqs . current s /= d Ð→ fst (CISK-control (step s a) d aseqs) = fst (CISK-control s d aseqs)
proof−
{

fix s a d aseqs
assume 1∶ current s /= d
from this aborting-after-step

have fst (CISK-control (step s a) d aseqs) = fst (CISK-control s d aseqs)
unfolding Kernel.step-def
by(cases (s,d,aseqs) rule∶ CISK-control.cases,simp,simp,simp,cases a,auto)

}
thus ?thesis by auto
qed

lemma next-state-precondition∶
shows ∀ s d a execs. AS-precondition s d a Ð→ AS-precondition (next-state s execs) d a
proof−
{

fix s a d execs
assume AS-precondition s d a
hence AS-precondition (next-state s execs) d a

unfolding Kernel.next-state-def
using precondition-after-set-error-code
by(cases (s,(current s),execs (current s)) rule∶ CISK-control.cases,auto)

}
thus ?thesis by auto
qed

lemma next-state-invariant∶
shows ∀ s execs. invariant s Ð→ invariant (next-state s execs)
proof−
{

fix s execs
assume invariant s
hence invariant (next-state s execs)

unfolding Kernel.next-state-def
using invariant-after-set-error-code
by(cases (s,(current s),execs (current s)) rule∶ CISK-control.cases,auto)

}
thus ?thesis by auto
qed

lemma next-action-from-execs∶
shows ∀ s execs . next-action s execs⇀ (λ a . a ∈ actions-in-execution (execs (current s)))
proof−
{

fix s execs

EURO-MILS D31.1 Page 54 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

{
fix a
assume 1∶ next-action s execs = Some a
from 1 have a ∈ actions-in-execution (execs (current s))

unfolding Kernel.next-action-def actions-in-execution-def
by (cases (s,(current s),execs (current s)) rule∶ CISK-control.cases,auto split add∶ split-if-asm)

}
hence next-action s execs⇀ (λ a . a ∈ actions-in-execution (execs (current s)))

unfolding B-def
by (cases next-action s execs,auto)

}
thus ?thesis unfolding B-def by (auto)
qed

lemma next-execs-subset∶
shows ∀ s execs u . actions-in-execution (next-execs s execs u) ⊆ actions-in-execution (execs u)
proof−
{

fix s execs u
have actions-in-execution (next-execs s execs u) ⊆ actions-in-execution (execs u)

unfolding Kernel.next-execs-def actions-in-execution-def
by (cases (s,(current s),execs (current s)) rule∶ CISK-control.cases,auto split add∶ split-if-asm)

}
thus ?thesis by auto
qed

theorem unwinding-implies-isecure-CISK∶
shows isecure
proof−
interpret int∶ Interruptible-Separation-Kernel kstep output-f s0 current cswitch interrupt kprecondition realistic-execution

CISK-control kinvolved ifp vpeq AS-set invariant AS-precondition aborting waiting
proof (unfold-locales)

show ∀a b c u. vpeq u a b ∧ vpeq u b c Ð→ vpeq u a c
using vpeq-transitive by blast

show ∀a b u. vpeq u a b Ð→ vpeq u b a
using vpeq-symmetric by blast

show ∀a u. vpeq u a a
using vpeq-reflexive by blast

show ∀u. ifp u u
using ifp-reflexive by blast

show ∀ s t u a. vpeq u s t ∧ vpeq (current s) s t ∧ kprecondition s a ∧ kprecondition t a ∧ current s = current t
Ð→ vpeq u (kstep s a) (kstep t a)

using weakly-step-consistent by blast
show ∀ a s u. ¬ifp (current s) u ∧ kprecondition s a Ð→ vpeq u s (kstep s a)

using locally-respects by blast
show ∀ a s t. vpeq (current s) s t ∧ current s = current t Ð→ (output-f s a) = (output-f t a)

using output-consistent by blast
show ∀ s a . current (kstep s a) = current s
using step-atomicity by blast

show ∀ n s t . current s = current t Ð→ current (cswitch n s) = current (cswitch n t)
using cswitch-independent-of-state by blast

show ∀ u s t n . vpeq u s t Ð→ vpeq u (cswitch n s) (cswitch n t)
using cswitch-consistency by blast

show ∀ s t execs. vpeq (current s) s t ∧ (∀ d ∈ involved (next-action s execs) . vpeq d s t) ∧ current s = current
t Ð→ next-action s execs = next-action t execs

using next-action-consistent by blast

EURO-MILS D31.1 Page 55 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

show ∀ s t execs.
vpeq (current s) s t ∧ (∀ d ∈ involved (next-action s execs) . vpeq d s t) ∧ current s = current t Ð→

fst (snd (CISK-control s (current s) (execs (current s)))) = fst (snd (CISK-control t (current s) (execs
(current s))))

using next-execs-consistent by blast
show ∀ s t u execs. vpeq (current s) s t ∧ vpeq u s t ∧ current s = current t Ð→ vpeq u (next-state s execs)

(next-state t execs)
using next-state-consistent by auto

show ∀ s execs. current (next-state s execs) = current s
using current-next-state by auto

show ∀ s u execs. ¬ ifp (current s) u Ð→ vpeq u s (next-state s execs)
using locally-respects-next-state by auto

show [] ∈ AS-set
using empty-in-AS-set by blast

show ∀ s n . invariant s Ð→ invariant (cswitch n s)
using invariant-after-cswitch by blast

show ∀ s d n a. AS-precondition s d aÐ→ AS-precondition (cswitch n s) d a
using precondition-after-cswitch by blast

show invariant s0
using invariant-s0 by blast

show ∀ s d aseq . invariant s ∧ aseq ∈ AS-set ∧ aseq /= [] Ð→ AS-precondition s d (hd aseq)
using AS-prec-first-action by blast
show ∀ s a a ′. (∃aseq∈AS-set. is-sub-seq a a ′ aseq) ∧ invariant s ∧ AS-precondition s (current s) a ∧ ¬

aborting s (current s) a ∧ ¬ waiting s (current s) a Ð→
AS-precondition (kstep s a) (current s) a ′

using AS-prec-after-step by blast
show ∀ s d a a ′ . current s /= d ∧ AS-precondition s d a Ð→ AS-precondition (kstep s a ′) d a

using AS-prec-dom-independent by blast
show ∀ s a . invariant s Ð→ invariant (kstep s a)

using spec-of-invariant by blast
show ⋀s a. kprecondition s a ≡ kprecondition s a

by auto
show ⋀aseq. realistic-execution aseq ≡ set aseq ⊆ AS-set

unfolding realistic-execution-def
by auto

show ∀ s a. ∀ d ∈ involved a. kprecondition s (the a) Ð→ ifp d (current s)
using involved-ifp unfolding Kernel.involved-def by (auto split∶ option.splits)

show ∀ s execs. next-action s execs⇀ (λa. a ∈ actions-in-execution (execs (current s)))
using next-action-from-execs by blast

show ∀ s execs u. actions-in-execution (next-execs s execs u) ⊆ actions-in-execution (execs u)
using next-execs-subset by blast

show ∀ s d aseqs.
case CISK-control s d aseqs of
(a, aseqs ′, s ′)⇒
thread-empty aseqs ∧ (a, aseqs ′) = (None, []) ∨
aseqs /= [] ∧ hd aseqs /= [] ∧ ¬ aborting s ′ d (the a) ∧ ¬ waiting s ′ d (the a) ∧ (a, aseqs ′) = (Some (hd (hd

aseqs)), tl (hd aseqs) # tl aseqs) ∨
aseqs /= [] ∧ hd aseqs /= [] ∧ waiting s ′ d (the a) ∧ (a, aseqs ′, s ′) = (Some (hd (hd aseqs)), aseqs, s) ∨ (a,

aseqs ′) = (None, tl aseqs)
using CISK-control-spec by blast

show ∀ s n d aseqs. fst (CISK-control (cswitch n s) d aseqs) = fst (CISK-control s d aseqs)
using next-action-after-cswitch by auto

show ∀ s execs d.
current s /= d Ð→
fst (CISK-control (next-state s execs) d (execs d)) = None ∨ fst (CISK-control (next-state s execs) d (execs

d)) = fst (CISK-control s d (execs d))
using next-action-after-next-state by auto

EURO-MILS D31.1 Page 56 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

show ∀ s a d aseqs. current s /= d Ð→ fst (CISK-control (step s a) d aseqs) = fst (CISK-control s d aseqs)
using next-action-after-step by auto

show ∀ s d a execs. AS-precondition s d aÐ→ AS-precondition (next-state s execs) d a
using next-state-precondition by auto

show ∀ s execs. invariant s Ð→ invariant (next-state s execs)
using next-state-invariant by auto

show ∀ s a. waiting s (current s) a Ð→ kstep s a = s
using spec-of-waiting by blast

qed

note interpreted=⟨Interruptible-Separation-Kernel kstep output-f s0 current cswitch kprecondition realistic-execution
CISK-control kinvolved ifp vpeq AS-set invariant AS-precondition aborting waiting⟩

note run-total-induct = Interruptible-Separation-Kernel.run-total.induct[of kstep output-f s0 current cswitch
kprecondition realistic-execution

CISK-control kinvolved ifp vpeq AS-set invariant AS-precondition
aborting waiting - interrupt]
have run-equals-run-total∶
⋀ n s execs . run n s execs ≡ Interruptible-Separation-Kernel.run-total kstep current cswitch interrupt

CISK-control n s execs
proof−

fix n s execs
show run n s execs ≡ Interruptible-Separation-Kernel.run-total kstep current cswitch interrupt CISK-control

n s execs
using interpreted int.step-def
by(induct n s execs rule∶ run-total-induct,auto split∶ option.splits)

qed
from interpreted
have 0∶ Interruptible-Separation-Kernel.isecure-total kstep output-f s0 current cswitch interrupt realistic-execution

CISK-control kinvolved ifp
by (metis int.unwinding-implies-isecure-total)

from 0 run-equals-run-total
have 1∶ NI-unrelated

by (metis realistic-executions-def int.isecure-total-def int.realistic-executions-def int.NI-unrelated-total-def
NI-unrelated-def)

from 0 run-equals-run-total
have 2∶ NI-indirect-sources
by (metis realistic-executions-def int.NI-indirect-sources-total-def int.isecure-total-def int.realistic-executions-def

NI-indirect-sources-def)
from 1 2 show ?thesis unfolding isecure-def by auto

qed

end
end

4 Instantiation by a separation kernel with concrete actions

In the previous section, no concrete actions for the step function were given. The foremost point we want to
make by this instantiation is to show that we can instantiate the CISK model of the previous section with an
implementation that, for the step function, as actions, provides events and interprocess communication (IPC).
System call invocations that can be interrupted at certain interrupt points are split into several atomic steps. A
communication interface of events and IPC is less “trivial” than it may seem it at a first glance, for example the L4
microkernel API only provided IPC as communication primitive [16]. In particular, the concrete actions illustrate
how an application of the CISK framework can be used to separate policy enforcement from other computations
unrelated to policy enforcement.
Our separation kernel instantiation also has a notion of partitions. A partition is a logical unit that serves to
encapsulate a group of CISK threads by, amongst others, enforcing a static per-partition access control policy to
system resources. In the following instantiation, while the subjects of the step function are individual threads, the

EURO-MILS D31.1 Page 57 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

information flow policy ifp is defined at the granularity of partitions, which is realistic for many separation kernel
implementations.
Lastly, as a limited manipulation of an access control policy is often needed, we also provide an invariant for having
a dynamic access control policy whose maximal closure is bounded by the static per-partition access control policy.
That the dynamic access control policy is a subset of a static access control policy is expressed by the invariant
sp subset. A use case for this is when you have statically configured access to files by subjects, but whether a
file can be read/written also depends on whether the file has been dynamically opened or not. The instantiation
provides infrastructure for such an invariant on the relation of a dynamic policy to a static policy, and shows how
the invariant is maintained, without modeling any API for an open/close operation.

4.1 Model of a separation kernel configuration
theory Step-configuration
imports Main

begin

4.1.1 Type definitions

The separation kernel partitions are considered to be the “subjects” of the information flow policy ifp.
A file provider is a partition that, via a file API (read/write), provides files to other partitions. The
configuration statically defines which partitions can act as a file provider and also the access rights
(right/write) of other partitions to the files provided by the file provider. Some separation kernels include
a management for address spaces (tasks), that may be hierachically structured. Such a task hierarchy is
not part of this model.

typedecl partition-id-t
typedecl thread-id-t

typedecl page-t — physical address of a memory page
typedecl filep-t — name of file provider

datatype obj-id-t =
PAGE page-t

∣ FILEP filep-t

datatype mode-t =
READ — The subject has right to read from the memory page, from the files served by a file provider.

∣ WRITE — The subject has right to write to the memory page, from the files served by a file provider.
∣ PROVIDE — The subject has right serve as the file provider. This mode is not used for memory pages or ports.

4.1.2 Configuration

The information flow policy is implicitly specified by the configuration. The configuration does not
contain the communication rights between partitions (subjects). However, the rights can be derived
from the configuration. For example, if two partitions p and p ′ can access a file f, then p and p ′ can
communicate. See below.

consts
configured-subj-obj ∶∶ partition-id-t⇒ obj-id-t⇒ mode-t⇒ bool

Each user thread belongs to a partition. The relation is fixed at system startup. The configuration
specifies how many threads a partition can create, but this limit is not part of the model.

consts
partition ∶∶ thread-id-t⇒ partition-id-t

end

EURO-MILS D31.1 Page 58 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

4.2 Formulation of a subject-subject communication policy and an information flow pol-
icy, and showing both can be derived from subject-object configuration data

theory Step-policies
imports Step-configuration

begin

4.2.1 Specification

In order to use CISK, we need an information flow policy ifp relation. We also express a static subject-
subject sp-spec-subj-obj and subject-object sp-spec-subj-subj access control policy for the implementa-
tion of the model. The following locale summarizes all properties we need.

locale policy-axioms =
fixes sp-spec-subj-obj ∶∶ ′a⇒ obj-id-t⇒ mode-t⇒ bool

and sp-spec-subj-subj ∶∶ ′a⇒ ′a⇒ bool
and ifp ∶∶ ′a⇒ ′a⇒ bool

assumes sp-spec-file-provider∶ ∀ p1 p2 f m1 m2 .
sp-spec-subj-obj p1 (FILEP f) m1 ∧
sp-spec-subj-obj p2 (FILEP f) m2 Ð→ sp-spec-subj-subj p1 p2

and sp-spec-no-wronly-pages∶
∀ p x . sp-spec-subj-obj p (PAGE x) WRITE Ð→ sp-spec-subj-obj p (PAGE x) READ

and ifp-reflexive∶
∀ p . ifp p p

and ifp-compatible-with-sp-spec∶
∀ a b . sp-spec-subj-subj a b Ð→ ifp a b ∧ ifp b a

and ifp-compatible-with-ipc∶
∀ a b c x . (sp-spec-subj-subj a b

∧ sp-spec-subj-obj b (PAGE x) WRITE ∧ sp-spec-subj-obj c (PAGE x) READ)
Ð→ ifp a c

begin end

4.2.2 Derivation

The configuration data only consists of a subject-object policy. We derive the subject-subject policy
and the information flow policy from the configuration data and prove that properties we specified in
Section 4.2.1 are satisfied.

locale abstract-policy-derivation =
fixes configuration-subj-obj ∶∶ ′a⇒ obj-id-t⇒ mode-t⇒ bool

begin

definition sp-spec-subj-obj a x m ≡
configuration-subj-obj a x m ∨ (∃ y . x = PAGE y ∧ m = READ ∧ configuration-subj-obj a x WRITE)

definition sp-spec-subj-subj a b ≡
∃ f m1 m2 . sp-spec-subj-obj a (FILEP f) m1 ∧ sp-spec-subj-obj b (FILEP f) m2

definition ifp a b ≡
sp-spec-subj-subj a b
∨ sp-spec-subj-subj b a
∨ (∃ c y . sp-spec-subj-subj a c

∧ sp-spec-subj-obj c (PAGE y) WRITE

EURO-MILS D31.1 Page 59 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

∧ sp-spec-subj-obj b (PAGE y) READ)
∨ (a = b)

Show that the policies specified in Section 4.2.1 can be derived from the configuration and their
definitions.

lemma correct∶
shows policy-axioms sp-spec-subj-obj sp-spec-subj-subj ifp

proof (unfold-locales)
show sp-spec-file-provider∶
∀ p1 p2 f m1 m2 .

sp-spec-subj-obj p1 (FILEP f) m1 ∧
sp-spec-subj-obj p2 (FILEP f) m2 Ð→ sp-spec-subj-subj p1 p2

unfolding sp-spec-subj-subj-def by auto
show sp-spec-no-wronly-pages∶
∀ p x . sp-spec-subj-obj p (PAGE x) WRITE Ð→ sp-spec-subj-obj p (PAGE x) READ
unfolding sp-spec-subj-obj-def by auto

show ifp-reflexive∶
∀ p . ifp p p
unfolding ifp-def by auto

show ifp-compatible-with-sp-spec∶
∀ a b . sp-spec-subj-subj a bÐ→ ifp a b ∧ ifp b a
unfolding ifp-def by auto

show ifp-compatible-with-ipc∶
∀ a b c x . (sp-spec-subj-subj a b

∧ sp-spec-subj-obj b (PAGE x) WRITE ∧ sp-spec-subj-obj c (PAGE x) READ)
Ð→ ifp a c

unfolding ifp-def by auto
qed

end

type-synonym sp-subj-subj-t = partition-id-t⇒ partition-id-t⇒ bool
type-synonym sp-subj-obj-t = partition-id-t⇒ obj-id-t⇒ mode-t⇒ bool

interpretation Policy∶ abstract-policy-derivation configured-subj-obj.
interpretation Policy-properties∶ policy-axioms Policy.sp-spec-subj-obj Policy.sp-spec-subj-subj Policy.ifp

using Policy.correct by auto

lemma example-how-to-use-properties-in-proofs∶
shows ∀ p . Policy.ifp p p
using Policy-properties.ifp-reflexive by auto

end

4.3 Separation kernel state and atomic step function
theory Step
imports Step-policies

begin

4.3.1 Interrupt points

To model concurrency, each system call is split into several atomic steps, while allowing interrupts be-
tween the steps. The state of a thread is represented by an “interrupt point” (which corresponds to the
value of the program counter saved by the system when a thread is interrupted).

datatype ipc-direction-t = SEND ∣ RECV
datatype ipc-stage-t = PREP ∣ WAIT ∣ BUF page-t

EURO-MILS D31.1 Page 60 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

datatype ev-consume-t = EV-CONSUME-ALL ∣ EV-CONSUME-ONE
datatype ev-wait-stage-t = EV-PREP ∣ EV-WAIT ∣ EV-FINISH
datatype ev-signal-stage-t = EV-SIGNAL-PREP ∣ EV-SIGNAL-FINISH

datatype int-point-t =
SK-IPC ipc-direction-t ipc-stage-t thread-id-t page-t — The thread is executing a sending / receiving IPC.

∣ SK-EV-WAIT ev-wait-stage-t ev-consume-t — The thread is waiting for an event.
∣ SK-EV-SIGNAL ev-signal-stage-t thread-id-t — The thread is sending an event.
∣ NONE — The thread is not executing any system call.

4.3.2 System state

typedecl obj-t — value of an object

Each thread belongs to a partition. The relation is fixed (in this instantiation of a separation kernel).

consts
partition ∶∶ thread-id-t⇒ partition-id-t

The state contains the dynamic policy (the communication rights in the current state of the system,
for example).

record thread-t =

ev-counter ∶∶ nat — event counter

record state-t =
sp-impl-subj-subj ∶∶ sp-subj-subj-t — current subject-subject policy
sp-impl-subj-obj ∶∶ sp-subj-obj-t — current subject-object policy
current ∶∶ thread-id-t — current thread
obj ∶∶ obj-id-t⇒ obj-t — values of all objects
thread ∶∶ thread-id-t⇒ thread-t — internal state of threads

Later (Section 4.4), the system invariant sp-subset will be used to ensure that the dynamic policies
(sp impl ...) are a subset of the corresponding static policies (sp spec ...).

4.3.3 Atomic step

Helper functions Set new value for an object.

definition set-object-value ∶∶ obj-id-t⇒ obj-t⇒ state-t⇒ state-t where
set-object-value obj-id val s =

s (∣ obj ∶= fun-upd (obj s) obj-id val ∣)

Return a representation of the opposite direction of IPC communication.

definition opposite-ipc-direction ∶∶ ipc-direction-t⇒ ipc-direction-t where
opposite-ipc-direction dir ≡ case dir of SEND⇒ RECV ∣ RECV ⇒ SEND

Add an access right from one partition to an object. In this model, not available from the API, but
shows how dynamic changes of access rights could be implemented.

definition add-access-right ∶∶ partition-id-t => obj-id-t => mode-t => state-t => state-t where
add-access-right part-id obj-id m s =
s (∣ sp-impl-subj-obj ∶= λ q q ′ q ′′. (part-id = q ∧ obj-id = q ′ ∧ m = q ′′)
∨ sp-impl-subj-obj s q q ′ q ′′∣)

Add a communication right from one partition to another. In this model, not available from the API.

definition add-comm-right ∶∶ partition-id-t⇒ partition-id-t⇒ state-t⇒ state-t where
add-comm-right p p ′ s ≡

s (∣ sp-impl-subj-subj ∶= λ q q ′ . (p = q ∧ p ′ = q ′) ∨ sp-impl-subj-subj s q q ′ ∣)

EURO-MILS D31.1 Page 61 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

Model of IPC system call We model IPC with the following simplifications:

1. The model contains the system calls for sending an IPC (SEND) and receiving an IPC (RECV),
often implementations have a richer API (e.g. combining SEND and RECV in one invocation).

2. We model only a copying (“BUF”) mode, not a memory-mapping mode.

3. The model always copies one page per syscall.

definition ipc-precondition ∶∶ thread-id-t⇒ ipc-direction-t⇒ thread-id-t⇒ page-t⇒ state-t⇒ bool where
ipc-precondition tid dir partner page s ≡

let sender = (case dir of SEND⇒ tid ∣ RECV ⇒ partner) in
let receiver = (case dir of SEND⇒ partner ∣ RECV ⇒ tid) in
let local-access-mode = (case dir of SEND⇒ READ ∣ RECV ⇒ WRITE) in
(sp-impl-subj-subj s (partition sender) (partition receiver)
∧ sp-impl-subj-obj s (partition tid) (PAGE page) local-access-mode)

definition atomic-step-ipc ∶∶ thread-id-t ⇒ ipc-direction-t ⇒ ipc-stage-t ⇒ thread-id-t ⇒ page-t ⇒ state-t ⇒
state-t where

atomic-step-ipc tid dir stage partner page s ≡
case stage of

PREP⇒
s

∣ WAIT ⇒
s

∣ BUF page ′⇒
(case dir of

SEND⇒
(set-object-value (PAGE page ′) (obj s (PAGE page)) s)

∣ RECV ⇒ s)

Model of event syscalls definition ev-signal-precondition ∶∶ thread-id-t⇒ thread-id-t⇒ state-t⇒ bool where
ev-signal-precondition tid partner s ≡
(sp-impl-subj-subj s (partition tid) (partition partner))

definition atomic-step-ev-signal ∶∶ thread-id-t⇒ thread-id-t⇒ state-t⇒ state-t where
atomic-step-ev-signal tid partner s =

s (∣ thread ∶= fun-upd (thread s) partner (thread s partner (∣ ev-counter ∶= Suc (ev-counter (thread s partner))
∣)) ∣)

definition atomic-step-ev-wait-one ∶∶ thread-id-t⇒ state-t⇒ state-t where
atomic-step-ev-wait-one tid s =

s (∣ thread ∶= fun-upd (thread s) tid (thread s tid (∣ ev-counter ∶= (ev-counter (thread s tid) − 1) ∣)) ∣)

definition atomic-step-ev-wait-all ∶∶ thread-id-t⇒ state-t⇒ state-t where
atomic-step-ev-wait-all tid s =

s (∣ thread ∶= fun-upd (thread s) tid (thread s tid (∣ ev-counter ∶= 0 ∣)) ∣)

Instantiation of CISK aborting and waiting In this instantiation of CISK, the aborting function is
used to indicate security policy enforcement. An IPC call aborts in its PREP stage if the precondition
for the calling thread does not hold. An event signal call aborts in its EV-SIGNAL-PREP stage if the
precondition for the calling thread does not hold.

definition aborting ∶∶ state-t⇒ thread-id-t⇒ int-point-t⇒ bool
where aborting s tid a ≡ case a of SK-IPC dir PREP partner page⇒

EURO-MILS D31.1 Page 62 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

¬ipc-precondition tid dir partner page s
∣ SK-EV-SIGNAL EV-SIGNAL-PREP partner ⇒
¬ev-signal-precondition tid partner s
∣ - => False

The waiting function is used to indicate synchronization. An IPC call waits in its WAIT stage while
the precondition for the partner thread does not hold. An EV WAIT call waits until the event counter is
not zero.

definition waiting ∶∶ state-t⇒ thread-id-t⇒ int-point-t⇒ bool
where waiting s tid a ≡

case a of SK-IPC dir WAIT partner page⇒
¬ipc-precondition partner (opposite-ipc-direction dir) tid (SOME page ′ . True) s

∣ SK-EV-WAIT EV-PREP -⇒ False
∣ SK-EV-WAIT EV-WAIT -⇒ ev-counter (thread s tid) = 0
∣ SK-EV-WAIT EV-FINISH -⇒ False
∣ -⇒ False

The atomic step function. In the definition of atomic-step the arguments to an interrupt point are not
taken from the thread state – the argument given to atomic-step could have an arbitrary value. So, seen
in isolation, atomic-step allows more transitions than actually occur in the separation kernel. However,
the CISK framework (1) restricts the atomic step function by the waiting and aborting functions as well
(2) the set of realistic traces as attack sequences rAS-set (Section 4.8). An additional condition is that
(3) the dynamic policy used in aborting is a subset of the static policy. This is ensured by the invariant
sp-subset.

definition atomic-step ∶∶ state-t⇒ int-point-t⇒ state-t where
atomic-step s ipt ≡

case ipt of
SK-IPC dir stage partner page⇒
atomic-step-ipc (current s) dir stage partner page s

∣ SK-EV-WAIT EV-PREP consume⇒ s
∣ SK-EV-WAIT EV-WAIT consume⇒ s
∣ SK-EV-WAIT EV-FINISH consume⇒

case consume of
EV-CONSUME-ONE ⇒ atomic-step-ev-wait-one (current s) s

∣ EV-CONSUME-ALL⇒ atomic-step-ev-wait-all (current s) s
∣ SK-EV-SIGNAL EV-SIGNAL-PREP partner ⇒ s
∣ SK-EV-SIGNAL EV-SIGNAL-FINISH partner ⇒

atomic-step-ev-signal (current s) partner s
∣ NONE ⇒ s

end

4.4 Preconditions and invariants for the atomic step
theory Step-invariants
imports Step

begin

The dynamic/implementation policies have to be compatible with the static configuration.

definition sp-subset s ≡
(∀ p1 p2 . sp-impl-subj-subj s p1 p2Ð→ Policy.sp-spec-subj-subj p1 p2)
∧ (∀ p1 p2 m. sp-impl-subj-obj s p1 p2 m Ð→ Policy.sp-spec-subj-obj p1 p2 m)

The following predicate expresses the precondition for the atomic step. The precondition depends on
the type of the atomic action.

EURO-MILS D31.1 Page 63 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

definition atomic-step-precondition ∶∶ state-t⇒ thread-id-t⇒ int-point-t⇒ bool where
atomic-step-precondition s tid ipt ≡

case ipt of
SK-IPC dir WAIT partner page⇒
(∗ the thread managed it past PREP stage ∗)
ipc-precondition tid dir partner page s

∣ SK-IPC dir (BUF page ′) partner page⇒
(∗ both the calling thread and its communication partner

managed it past PREP and WAIT stages ∗)
ipc-precondition tid dir partner page s
∧ ipc-precondition partner (opposite-ipc-direction dir) tid page ′ s

∣ SK-EV-SIGNAL EV-SIGNAL-FINISH partner ⇒
ev-signal-precondition tid partner s

∣ -⇒
(∗ No precondition for other interrupt points. ∗)
True

The invariant to be preserved by the atomic step function. The invariant is independent from the type
of the atomic action.
definition atomic-step-invariant ∶∶ state-t⇒ bool where
atomic-step-invariant s ≡

sp-subset s

4.4.1 Atomic steps of SK IPC preserve invariants

lemma set-object-value-invariant∶
shows atomic-step-invariant s = atomic-step-invariant (set-object-value ob va s)

proof −
show ?thesis using assms

unfolding atomic-step-invariant-def atomic-step-precondition-def ipc-precondition-def
sp-subset-def set-object-value-def Let-def

by (simp split add∶ int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits)
qed

lemma set-thread-value-invariant∶
shows atomic-step-invariant s = atomic-step-invariant (s (∣ thread ∶= thrst ∣))

proof −
show ?thesis using assms

unfolding atomic-step-invariant-def atomic-step-precondition-def ipc-precondition-def
sp-subset-def set-object-value-def Let-def

by (simp split add∶ int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits)
qed

lemma atomic-ipc-preserves-invariants∶
fixes s ∶∶ state-t

and tid ∶∶ thread-id-t
assumes atomic-step-invariant s
shows atomic-step-invariant (atomic-step-ipc tid dir stage partner page s)

proof −
show ?thesis

proof (cases stage)
case PREP

from this assms show ?thesis
unfolding atomic-step-ipc-def atomic-step-invariant-def by auto

next
case WAIT

from this assms show ?thesis
unfolding atomic-step-ipc-def atomic-step-invariant-def by auto

EURO-MILS D31.1 Page 64 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

next
case BUF

show ?thesis
using assms BUF set-object-value-invariant
unfolding atomic-step-ipc-def
by (simp split add∶ ipc-direction-t.splits)

qed
qed

lemma atomic-ev-wait-one-preserves-invariants∶
fixes s ∶∶ state-t

and tid ∶∶ thread-id-t
assumes atomic-step-invariant s
shows atomic-step-invariant (atomic-step-ev-wait-one tid s)
proof −
from assms show ?thesis
unfolding atomic-step-ev-wait-one-def atomic-step-invariant-def sp-subset-def
by auto

qed

lemma atomic-ev-wait-all-preserves-invariants∶
fixes s ∶∶ state-t

and tid ∶∶ thread-id-t
assumes atomic-step-invariant s
shows atomic-step-invariant (atomic-step-ev-wait-all tid s)
proof −
from assms show ?thesis
unfolding atomic-step-ev-wait-all-def atomic-step-invariant-def sp-subset-def
by auto

qed

lemma atomic-ev-signal-preserves-invariants∶
fixes s ∶∶ state-t
and tid ∶∶ thread-id-t

assumes atomic-step-invariant s
shows atomic-step-invariant (atomic-step-ev-signal tid partner s)
proof −
from assms show ?thesis
unfolding atomic-step-ev-signal-def atomic-step-invariant-def sp-subset-def
by auto

qed

4.4.2 Summary theorems on atomic step invariants

Now we are ready to show that an atomic step from the current interrupt point in any thread preserves
invariants.

theorem atomic-step-preserves-invariants∶
fixes s ∶∶ state-t
and tid ∶∶ thread-id-t

assumes atomic-step-invariant s
shows atomic-step-invariant (atomic-step s a)

proof (cases a)
case SK-IPC

then show ?thesis unfolding atomic-step-def
using assms atomic-ipc-preserves-invariants
by simp

next case (SK-EV-WAIT ev-wait-stage consume)

EURO-MILS D31.1 Page 65 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

then show ?thesis
proof (cases consume)
case EV-CONSUME-ALL
then show ?thesis unfolding atomic-step-def
using SK-EV-WAIT assms atomic-ev-wait-all-preserves-invariants
by (simp split∶ ev-wait-stage-t.splits)

next case EV-CONSUME-ONE
then show ?thesis unfolding atomic-step-def
using SK-EV-WAIT assms atomic-ev-wait-one-preserves-invariants
by (simp split∶ ev-wait-stage-t.splits)

qed
next case SK-EV-SIGNAL
then show ?thesis unfolding atomic-step-def
using assms atomic-ev-signal-preserves-invariants
by (simp add∶ ev-signal-stage-t.splits)

next case NONE
then show ?thesis unfolding atomic-step-def
using assms
by auto

qed

Finally, the invariants do not depend on the current thread. That is, the context switch preserves the
invariants, and an atomic step that is not a context switch does not change the current thread.

theorem cswitch-preserves-invariants∶
fixes s ∶∶ state-t

and new-current ∶∶ thread-id-t
assumes atomic-step-invariant s
shows atomic-step-invariant (s (∣ current ∶= new-current ∣))

proof −
let ?s1 = s (∣ current ∶= new-current ∣)
have sp-subset s = sp-subset ?s1

unfolding sp-subset-def by auto
from assms this show ?thesis

unfolding atomic-step-invariant-def by metis
qed

theorem atomic-step-does-not-change-current-thread∶
shows current (atomic-step s ipt) = current s

proof −
show ?thesis

unfolding atomic-step-def
and atomic-step-ipc-def
and set-object-value-def Let-def
and atomic-step-ev-wait-one-def atomic-step-ev-wait-all-def
and atomic-step-ev-signal-def

by (simp split add∶ int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits
ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)

qed

end

4.5 The view-partitioning equivalence relation
theory Step-vpeq
imports Step Step-invariants

begin

The view consists of

EURO-MILS D31.1 Page 66 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

1. View of object values.

2. View of subject-subject dynamic policy. The threads can discover the policy at runtime, e.g. by
calling ipc() and observing success or failure.

3. View of subject-object dynamic policy. The threads can discover the policy at runtime, e.g. by
calling open() and observing success or failure.

definition vpeq-obj ∶∶ partition-id-t⇒ state-t⇒ state-t⇒ bool where
vpeq-obj u s t ≡ ∀ obj-id . Policy.sp-spec-subj-obj u obj-id READÐ→ (obj s) obj-id = (obj t) obj-id

definition vpeq-subj-subj ∶∶ partition-id-t⇒ state-t⇒ state-t⇒ bool where
vpeq-subj-subj u s t ≡
∀ v . ((Policy.sp-spec-subj-subj u vÐ→ sp-impl-subj-subj s u v = sp-impl-subj-subj t u v)

∧ (Policy.sp-spec-subj-subj v uÐ→ sp-impl-subj-subj s v u = sp-impl-subj-subj t v u))

definition vpeq-subj-obj ∶∶ partition-id-t⇒ state-t⇒ state-t⇒ bool where
vpeq-subj-obj u s t ≡
∀ ob m p1 .
(Policy.sp-spec-subj-obj u ob m Ð→ sp-impl-subj-obj s u ob m = sp-impl-subj-obj t u ob m)
∧ (Policy.sp-spec-subj-obj p1 ob PROVIDE ∧ (Policy.sp-spec-subj-obj u ob READ ∨ Policy.sp-spec-subj-obj u

ob WRITE) Ð→
sp-impl-subj-obj s p1 ob PROVIDE = sp-impl-subj-obj t p1 ob PROVIDE)

definition vpeq-local ∶∶ partition-id-t⇒ state-t⇒ state-t⇒ bool where
vpeq-local u s t ≡
∀ tid . (partition tid) = u Ð→ (thread s tid) = (thread t tid)

definition vpeq u s t ≡
vpeq-obj u s t ∧ vpeq-subj-subj u s t ∧ vpeq-subj-obj u s t ∧ vpeq-local u s t

4.5.1 Elementary properties

lemma vpeq-rel∶
shows vpeq-refl∶ vpeq u s s
and vpeq-sym [sym]∶ vpeq u s tÔ⇒ vpeq u t s
and vpeq-trans [trans]∶ [[vpeq u s1 s2 ; vpeq u s2 s3]]Ô⇒ vpeq u s1 s3

unfolding vpeq-def vpeq-obj-def vpeq-subj-subj-def vpeq-subj-obj-def vpeq-local-def
by auto

Auxiliary equivalence relation.

lemma set-object-value-ign∶
assumes eq-obs∶ ∼ Policy.sp-spec-subj-obj u x READ

shows vpeq u s (set-object-value x y s)
proof −

from assms show ?thesis
unfolding vpeq-def vpeq-obj-def vpeq-subj-subj-def vpeq-subj-obj-def set-object-value-def

vpeq-local-def
by auto

qed

Context-switch and fetch operations are also consistent with vpeq and locally respect everything.

theorem cswitch-consistency-and-respect∶
fixes u ∶∶ partition-id-t

and s ∶∶ state-t
and new-current ∶∶ thread-id-t

EURO-MILS D31.1 Page 67 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

assumes atomic-step-invariant s
shows vpeq u s (s (∣ current ∶= new-current ∣))

proof −
show ?thesis

unfolding vpeq-def vpeq-obj-def vpeq-subj-subj-def vpeq-subj-obj-def vpeq-local-def
by auto

qed

end

4.6 Atomic step locally respects the information flow policy
theory Step-vpeq-locally-respects
imports Step Step-invariants Step-vpeq

begin

The notion of locally respects is common usage. We augment it by assuming that the atomic-step-invariant
holds (see [31]).

4.6.1 Locally respects of atomic step functions

lemma ipc-respects-policy∶
assumes no∶ ¬ Policy.ifp (partition tid) u

and inv∶ atomic-step-invariant s
and prec∶ atomic-step-precondition s tid (SK-IPC dir stage partner pag)
and ipt-case∶ ipt = SK-IPC dir stage partner page

shows vpeq u s (atomic-step-ipc tid dir stage partner page s)
proof(cases stage)
case PREP
thus ?thesis
unfolding atomic-step-ipc-def
using vpeq-refl by simp

next
case WAIT
thus ?thesis
unfolding atomic-step-ipc-def
using vpeq-refl by simp

next case (BUF mypage)
show ?thesis
proof(cases dir)
case RECV
thus ?thesis
unfolding atomic-step-ipc-def
using vpeq-refl BUF by simp

next
case SEND

have Policy.sp-spec-subj-subj (partition tid) (partition partner)
and Policy.sp-spec-subj-obj (partition partner) (PAGE mypage) WRITE
using BUF SEND inv prec ipt-case
unfolding atomic-step-invariant-def sp-subset-def
unfolding atomic-step-precondition-def ipc-precondition-def opposite-ipc-direction-def
by auto

hence ¬ Policy.sp-spec-subj-obj u (PAGE mypage) READ
using no Policy-properties.ifp-compatible-with-ipc
by auto

EURO-MILS D31.1 Page 68 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

thus ?thesis
using BUF SEND assms
unfolding atomic-step-ipc-def set-object-value-def
unfolding vpeq-def vpeq-obj-def vpeq-subj-obj-def vpeq-subj-subj-def vpeq-local-def
by auto

qed
qed

lemma ev-signal-respects-policy∶
assumes no∶ ¬ Policy.ifp (partition tid) u

and inv∶ atomic-step-invariant s
and prec∶ atomic-step-precondition s tid (SK-EV-SIGNAL EV-SIGNAL-FINISH partner)
and ipt-case∶ ipt = SK-EV-SIGNAL EV-SIGNAL-FINISH partner

shows vpeq u s (atomic-step-ev-signal tid partner s)
proof −
from inv no have ¬ sp-impl-subj-subj s (partition tid) u
unfolding Policy.ifp-def atomic-step-invariant-def sp-subset-def
by auto
with prec have 1∶(partition partner) /= u
unfolding atomic-step-precondition-def ev-signal-precondition-def
by (auto simp add∶ ev-signal-stage-t.splits)

then have 2∶vpeq-local u s (atomic-step-ev-signal tid partner s)
unfolding vpeq-local-def atomic-step-ev-signal-def
by simp
have 3∶vpeq-obj u s (atomic-step-ev-signal tid partner s)
unfolding vpeq-obj-def atomic-step-ev-signal-def
by simp
have 4∶vpeq-subj-subj u s (atomic-step-ev-signal tid partner s)
unfolding vpeq-subj-subj-def atomic-step-ev-signal-def
by simp
have 5∶vpeq-subj-obj u s (atomic-step-ev-signal tid partner s)
unfolding vpeq-subj-obj-def atomic-step-ev-signal-def
by simp
with 2 3 4 5 show ?thesis
unfolding vpeq-def
by simp

qed

lemma ev-wait-all-respects-policy∶
assumes no∶ ¬ Policy.ifp (partition tid) u

and inv∶ atomic-step-invariant s
and prec∶ atomic-step-precondition s tid ipt
and ipt-case∶ ipt = SK-EV-WAIT ev-wait-stage EV-CONSUME-ALL

shows vpeq u s (atomic-step-ev-wait-all tid s)
proof −
from assms have 1∶(partition tid) /= u
unfolding Policy.ifp-def
by simp
then have 2∶vpeq-local u s (atomic-step-ev-wait-all tid s)
unfolding vpeq-local-def atomic-step-ev-wait-all-def
by simp
have 3∶vpeq-obj u s (atomic-step-ev-wait-all tid s)
unfolding vpeq-obj-def atomic-step-ev-wait-all-def
by simp
have 4∶vpeq-subj-subj u s (atomic-step-ev-wait-all tid s)
unfolding vpeq-subj-subj-def atomic-step-ev-wait-all-def
by simp

EURO-MILS D31.1 Page 69 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

have 5∶vpeq-subj-obj u s (atomic-step-ev-wait-all tid s)
unfolding vpeq-subj-obj-def atomic-step-ev-wait-all-def
by simp

with 2 3 4 5 show ?thesis
unfolding vpeq-def
by simp

qed

lemma ev-wait-one-respects-policy∶
assumes no∶ ¬ Policy.ifp (partition tid) u

and inv∶ atomic-step-invariant s
and prec∶ atomic-step-precondition s tid ipt
and ipt-case∶ ipt = SK-EV-WAIT ev-wait-stage EV-CONSUME-ONE

shows vpeq u s (atomic-step-ev-wait-one tid s)
proof −
from assms have 1∶(partition tid) /= u
unfolding Policy.ifp-def
by simp

then have 2∶vpeq-local u s (atomic-step-ev-wait-one tid s)
unfolding vpeq-local-def atomic-step-ev-wait-one-def
by simp

have 3∶vpeq-obj u s (atomic-step-ev-wait-one tid s)
unfolding vpeq-obj-def atomic-step-ev-wait-one-def
by simp

have 4∶vpeq-subj-subj u s (atomic-step-ev-wait-one tid s)
unfolding vpeq-subj-subj-def atomic-step-ev-wait-one-def
by simp

have 5∶vpeq-subj-obj u s (atomic-step-ev-wait-one tid s)
unfolding vpeq-subj-obj-def atomic-step-ev-wait-one-def
by simp

with 2 3 4 5 show ?thesis
unfolding vpeq-def
by simp

qed

4.6.2 Summary theorems on view-partitioning locally respects

Atomic step locally respects the information flow policy (ifp). The policy ifp is not necessarily the same
as sp spec subj subj.

theorem atomic-step-respects-policy∶
assumes no∶ ¬ Policy.ifp (partition (current s)) u

and inv∶ atomic-step-invariant s
and prec∶ atomic-step-precondition s (current s) ipt

shows vpeq u s (atomic-step s ipt)
proof −

show ?thesis
using assms ipc-respects-policy vpeq-refl

ev-signal-respects-policy ev-wait-one-respects-policy
ev-wait-all-respects-policy

unfolding atomic-step-def
by (auto split add∶ int-point-t.splits ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)

qed

end

EURO-MILS D31.1 Page 70 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

4.7 Weak step consistency
theory Step-vpeq-weakly-step-consistent
imports Step Step-invariants Step-vpeq

begin

The notion of weak step consistency is common usage. We augment it by assuming that the atomic-step-invariant
holds (see [31]).

4.7.1 Weak step consistency of auxiliary functions

lemma ipc-precondition-weakly-step-consistent∶
assumes eq-tid∶ vpeq (partition tid) s1 s2

and inv1∶ atomic-step-invariant s1
and inv2∶ atomic-step-invariant s2

shows ipc-precondition tid dir partner page s1 = ipc-precondition tid dir partner page s2
proof −

let ?sender = case dir of SEND⇒ tid ∣ RECV ⇒ partner
let ?receiver = case dir of SEND⇒ partner ∣ RECV ⇒ tid
let ?local-access-mode = case dir of SEND⇒ READ ∣ RECV ⇒ WRITE
let ?A = sp-impl-subj-subj s1 (partition ?sender) (partition ?receiver)

= sp-impl-subj-subj s2 (partition ?sender) (partition ?receiver)
let ?B = sp-impl-subj-obj s1 (partition tid) (PAGE page) ?local-access-mode

= sp-impl-subj-obj s2 (partition tid) (PAGE page) ?local-access-mode

have A∶ ?A
proof (cases Policy.sp-spec-subj-subj (partition ?sender) (partition ?receiver))
case True

thus ?A
using eq-tid unfolding vpeq-def vpeq-subj-subj-def
by (simp split add∶ ipc-direction-t.splits)

next case False
have sp-subset s1 and sp-subset s2

using inv1 inv2 unfolding atomic-step-invariant-def sp-subset-def by auto
hence ¬ sp-impl-subj-subj s1 (partition ?sender) (partition ?receiver)
and ¬ sp-impl-subj-subj s2 (partition ?sender) (partition ?receiver)
using False unfolding sp-subset-def by auto

thus ?A by auto
qed

have B∶ ?B
proof (cases Policy.sp-spec-subj-obj (partition tid) (PAGE page) ?local-access-mode)

case True
thus ?B

using eq-tid unfolding vpeq-def vpeq-subj-obj-def
by (simp split add∶ ipc-direction-t.splits)

next case False
have sp-subset s1 and sp-subset s2
using inv1 inv2 unfolding atomic-step-invariant-def sp-subset-def by auto

hence ¬ sp-impl-subj-obj s1 (partition tid) (PAGE page) ?local-access-mode
and ¬ sp-impl-subj-obj s2 (partition tid) (PAGE page) ?local-access-mode
using False unfolding sp-subset-def by auto

thus ?B by auto
qed

show ?thesis using A B unfolding ipc-precondition-def by auto
qed

lemma ev-signal-precondition-weakly-step-consistent∶
assumes eq-tid∶ vpeq (partition tid) s1 s2

EURO-MILS D31.1 Page 71 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

and inv1∶ atomic-step-invariant s1
and inv2∶ atomic-step-invariant s2

shows ev-signal-precondition tid partner s1 = ev-signal-precondition tid partner s2
proof −

let ?A = sp-impl-subj-subj s1 (partition tid) (partition partner)
= sp-impl-subj-subj s2 (partition tid) (partition partner)

have A∶ ?A
proof (cases Policy.sp-spec-subj-subj (partition tid) (partition partner))

case True
thus ?A

using eq-tid unfolding vpeq-def vpeq-subj-subj-def
by (simp split add∶ ipc-direction-t.splits)

next case False
have sp-subset s1 and sp-subset s2

using inv1 inv2 unfolding atomic-step-invariant-def sp-subset-def by auto
hence ¬ sp-impl-subj-subj s1 (partition tid) (partition partner)

and ¬ sp-impl-subj-subj s2 (partition tid) (partition partner)
using False unfolding sp-subset-def by auto

thus ?A by auto
qed

show ?thesis using A unfolding ev-signal-precondition-def by auto
qed

lemma set-object-value-consistent∶
assumes eq-obs∶ vpeq u s1 s2

shows vpeq u (set-object-value x y s1) (set-object-value x y s2)
proof −

let ?s1 ′ = set-object-value x y s1 and ?s2 ′ = set-object-value x y s2
have E1∶ vpeq-obj u ?s1 ′ ?s2 ′

proof −
{ fix x ′

assume 1∶ Policy.sp-spec-subj-obj u x ′ READ
have obj ?s1 ′ x ′ = obj ?s2 ′ x ′ proof (cases x = x ′)

case True
thus obj ?s1 ′ x ′ = obj ?s2 ′ x ′ unfolding set-object-value-def by auto

next case False
hence 2∶ obj ?s1 ′ x ′ = obj s1 x ′

and 3∶ obj ?s2 ′ x ′ = obj s2 x ′

unfolding set-object-value-def by auto
have 4∶ obj s1 x ′ = obj s2 x ′

using 1 eq-obs unfolding vpeq-def vpeq-obj-def by auto
from 2 3 4 show obj ?s1 ′ x ′ = obj ?s2 ′ x ′

by simp
qed }

thus vpeq-obj u ?s1 ′ ?s2 ′ unfolding vpeq-obj-def by auto
qed

have E4∶ vpeq-subj-subj u ?s1 ′ ?s2 ′

proof −
have sp-impl-subj-subj ?s1 ′ = sp-impl-subj-subj s1
and sp-impl-subj-subj ?s2 ′ = sp-impl-subj-subj s2
unfolding set-object-value-def by auto

thus vpeq-subj-subj u ?s1 ′ ?s2 ′

using eq-obs unfolding vpeq-def vpeq-subj-subj-def by auto
qed

have E5∶ vpeq-subj-obj u ?s1 ′ ?s2 ′

proof −

EURO-MILS D31.1 Page 72 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

have sp-impl-subj-obj ?s1 ′ = sp-impl-subj-obj s1
and sp-impl-subj-obj ?s2 ′ = sp-impl-subj-obj s2
unfolding set-object-value-def by auto

thus vpeq-subj-obj u ?s1 ′ ?s2 ′

using eq-obs unfolding vpeq-def vpeq-subj-obj-def by auto
qed

from eq-obs have E6∶ vpeq-local u ?s1 ′ ?s2 ′

unfolding vpeq-def vpeq-local-def set-object-value-def
by simp

from E1 E4 E5 E6
show ?thesis unfolding vpeq-def
by auto

qed

4.7.2 Weak step consistency of atomic step functions

lemma ipc-weakly-step-consistent∶
assumes eq-obs∶ vpeq u s1 s2

and eq-act∶ vpeq (partition tid) s1 s2
and inv1∶ atomic-step-invariant s1
and inv2∶ atomic-step-invariant s2
and prec1∶ atomic-step-precondition s1 tid ipt
and prec2∶ atomic-step-precondition s1 tid ipt
and ipt-case∶ ipt = SK-IPC dir stage partner page

shows vpeq u
(atomic-step-ipc tid dir stage partner page s1)
(atomic-step-ipc tid dir stage partner page s2)

proof −
have ⋀ mypage . [[dir = SEND; stage = BUF mypage]]Ô⇒ ?thesis

proof −
fix mypage
assume dir-send∶ dir = SEND
assume stage-buf ∶ stage = BUF mypage
have Policy.sp-spec-subj-obj (partition tid) (PAGE page) READ

using inv1 prec1 dir-send stage-buf ipt-case
unfolding atomic-step-invariant-def sp-subset-def
unfolding atomic-step-precondition-def ipc-precondition-def opposite-ipc-direction-def
by auto

hence obj s1 (PAGE page) = obj s2 (PAGE page)
using eq-act unfolding vpeq-def vpeq-obj-def vpeq-local-def
by auto

thus vpeq u
(atomic-step-ipc tid dir stage partner page s1)
(atomic-step-ipc tid dir stage partner page s2)

using dir-send stage-buf eq-obs set-object-value-consistent
unfolding atomic-step-ipc-def
by auto

qed
thus ?thesis

using eq-obs unfolding atomic-step-ipc-def
by (cases stage, auto, cases dir, auto)

qed

lemma ev-wait-one-weakly-step-consistent∶
assumes eq-obs∶ vpeq u s1 s2

and eq-act∶ vpeq (partition tid) s1 s2
and inv1∶ atomic-step-invariant s1
and inv2∶ atomic-step-invariant s2

EURO-MILS D31.1 Page 73 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

and prec1∶ atomic-step-precondition s1 (current s1) ipt
and prec2∶ atomic-step-precondition s1 (current s1) ipt

shows vpeq u
(atomic-step-ev-wait-one tid s1)
(atomic-step-ev-wait-one tid s2)

using assms
unfolding vpeq-def vpeq-subj-subj-def vpeq-obj-def vpeq-subj-obj-def vpeq-local-def

atomic-step-ev-wait-one-def
by simp

lemma ev-wait-all-weakly-step-consistent∶
assumes eq-obs∶ vpeq u s1 s2

and eq-act∶ vpeq (partition tid) s1 s2
and inv1∶ atomic-step-invariant s1
and inv2∶ atomic-step-invariant s2
and prec1∶ atomic-step-precondition s1 (current s1) ipt
and prec2∶ atomic-step-precondition s1 (current s1) ipt

shows vpeq u
(atomic-step-ev-wait-all tid s1)
(atomic-step-ev-wait-all tid s2)

using assms
unfolding vpeq-def vpeq-subj-subj-def vpeq-obj-def vpeq-subj-obj-def vpeq-local-def

atomic-step-ev-wait-all-def
by simp

lemma ev-signal-weakly-step-consistent∶
assumes eq-obs∶ vpeq u s1 s2

and eq-act∶ vpeq (partition tid) s1 s2
and inv1∶ atomic-step-invariant s1
and inv2∶ atomic-step-invariant s2
and prec1∶ atomic-step-precondition s1 (current s1) ipt
and prec2∶ atomic-step-precondition s1 (current s1) ipt

shows vpeq u
(atomic-step-ev-signal tid partner s1)
(atomic-step-ev-signal tid partner s2)

using assms
unfolding vpeq-def vpeq-subj-subj-def vpeq-obj-def vpeq-subj-obj-def vpeq-local-def

atomic-step-ev-signal-def
by simp

The use of extend-f is to provide infrastructure to support use in dynamic policies, currently not used.

definition extend-f ∶∶ (partition-id-t ⇒ partition-id-t ⇒ bool) ⇒ (partition-id-t ⇒ partition-id-t ⇒ bool) ⇒
(partition-id-t⇒ partition-id-t⇒ bool) where
extend-f f g ≡ λ p1 p2 . f p1 p2 ∨ g p1 p2

definition extend-subj-subj ∶∶ (partition-id-t⇒ partition-id-t⇒ bool)⇒ state-t⇒ state-t where
extend-subj-subj f s ≡ s (∣ sp-impl-subj-subj ∶= extend-f f (sp-impl-subj-subj s) ∣)

lemma extend-subj-subj-consistent∶
fixes f ∶∶ partition-id-t⇒ partition-id-t⇒ bool
assumes vpeq u s1 s2
shows vpeq u (extend-subj-subj f s1) (extend-subj-subj f s2)

proof −
let ?g1 = sp-impl-subj-subj s1 and ?g2 = sp-impl-subj-subj s2
have ∀ v . Policy.sp-spec-subj-subj u v Ð→ ?g1 u v = ?g2 u v
and ∀ v . Policy.sp-spec-subj-subj v uÐ→ ?g1 v u = ?g2 v u
using assms unfolding vpeq-def vpeq-subj-subj-def by auto

EURO-MILS D31.1 Page 74 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

hence ∀ v . Policy.sp-spec-subj-subj u v Ð→ extend-f f ?g1 u v = extend-f f ?g2 u v
and ∀ v . Policy.sp-spec-subj-subj v uÐ→ extend-f f ?g1 v u = extend-f f ?g2 v u
unfolding extend-f-def by auto

hence 1∶ vpeq-subj-subj u (extend-subj-subj f s1) (extend-subj-subj f s2)
unfolding vpeq-subj-subj-def extend-subj-subj-def
by auto

have 2∶ vpeq-obj u (extend-subj-subj f s1) (extend-subj-subj f s2)
using assms unfolding vpeq-def vpeq-obj-def extend-subj-subj-def by fastforce

have 3∶ vpeq-subj-obj u (extend-subj-subj f s1) (extend-subj-subj f s2)
using assms unfolding vpeq-def vpeq-subj-obj-def extend-subj-subj-def by fastforce

have 4∶ vpeq-local u (extend-subj-subj f s1) (extend-subj-subj f s2)
using assms unfolding vpeq-def vpeq-local-def extend-subj-subj-def by fastforce

from 1 2 3 4 show ?thesis
using assms unfolding vpeq-def by fast

qed

4.7.3 Summary theorems on view-partitioning weak step consistency

The atomic step is weakly step consistent with view partitioning. Here, the “weakness” is that we assume
that the two states are vp-equivalent not only w.r.t. the observer domain u, but also w.r.t. the caller domain
Step.partition tid).

theorem atomic-step-weakly-step-consistent∶
assumes eq-obs∶ vpeq u s1 s2

and eq-act∶ vpeq (partition (current s1)) s1 s2
and inv1∶ atomic-step-invariant s1
and inv2∶ atomic-step-invariant s2
and prec1∶ atomic-step-precondition s1 (current s1) ipt
and prec2∶ atomic-step-precondition s2 (current s2) ipt
and eq-curr∶ current s1 = current s2

shows vpeq u (atomic-step s1 ipt) (atomic-step s2 ipt)
proof −

show ?thesis
using assms

ipc-weakly-step-consistent
ev-wait-all-weakly-step-consistent
ev-wait-one-weakly-step-consistent
ev-signal-weakly-step-consistent
vpeq-refl ev-signal-stage-t.exhaust

unfolding atomic-step-def
apply (cases ipt, auto)
apply (simp split add∶ ev-consume-t.splits ev-wait-stage-t.splits)
by (simp split add∶ ev-signal-stage-t.splits)

qed
end

4.8 Separation kernel model
theory Separation-kernel-model
imports ../../step/Step

../../step/Step-invariants

../../step/Step-vpeq

../../step/Step-vpeq-locally-respects

../../step/Step-vpeq-weakly-step-consistent
CISK

begin

First (Section 4.8.1) we instantiate the CISK generic model. Functions that instantiate a generic

EURO-MILS D31.1 Page 75 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

function of the CISK model are prefixed with an ‘r’, ‘r’ standing for “Rushby’;, as CISK is derived
originally from a model by Rushby [31]. For example, ‘rifp’ is the instantiation of the generic ‘ifp’.

Later (Section 4.8.5) all CISK proof obligations are discharged, e.g., weak step consistency, output
consistency, etc. These will be used in Section 4.9.

4.8.1 Initial state of separation kernel model

We assume that the initial state of threads and memory is given. The initial state of threads is arbitrary,
but the threads are not executing the system call. The purpose of the following definitions is to obtain
the initial state without potentially dangerous axioms. The only axioms we admit without proof are
formulated using the “consts” syntax and thus safe.

consts
initial-current ∶∶ thread-id-t
initial-obj ∶∶ obj-id-t⇒ obj-t

definition s0 ∶∶ state-t where
s0 ≡ (∣ sp-impl-subj-subj = Policy.sp-spec-subj-subj,

sp-impl-subj-obj = Policy.sp-spec-subj-obj,
current = initial-current,
obj = initial-obj,
thread = λ - . (∣ ev-counter = 0 ∣)
∣)

lemma initial-invariant∶
shows atomic-step-invariant s0

proof −
have sp-subset s0

unfolding sp-subset-def s0-def by auto
thus ?thesis

unfolding atomic-step-invariant-def by auto
qed

4.8.2 Types for instantiation of the generic model

To simplify formulations, we include the state invariant atomic-step-invariant in the state data type. The
initial state s0 serves at witness that rstate-t is non-empty.

typedef rstate-t = { s . atomic-step-invariant s }
using initial-invariant by auto

definition abs ∶∶ state-t⇒ rstate-t (↑ -) where abs = Abs-rstate-t
definition rep ∶∶ rstate-t⇒ state-t (↓ -) where rep = Rep-rstate-t

lemma rstate-invariant∶
shows atomic-step-invariant (↓s)
unfolding rep-def by (metis Rep-rstate-t mem-Collect-eq)

lemma rstate-down-up[simp]∶
shows (↑↓s) = s
unfolding rep-def abs-def using Rep-rstate-t-inverse by auto

lemma rstate-up-down[simp]∶
assumes atomic-step-invariant s
shows (↓↑s) = s
using assms Abs-rstate-t-inverse unfolding rep-def abs-def by auto

A CISK action is identified with an interrupt point.

EURO-MILS D31.1 Page 76 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

type-synonym raction-t = int-point-t

definition rcurrent ∶∶ rstate-t⇒ thread-id-t where
rcurrent s = current ↓s

definition rstep ∶∶ rstate-t⇒ raction-t⇒ rstate-t where
rstep s a ≡ ↑(atomic-step (↓s) a)

Each CISK domain is identified with a thread id.

type-synonym rdom-t = thread-id-t

The output function returns the contents of all memory accessible to the subject. The action argument
of the output function is ignored.

datatype visible-obj-t = VALUE obj-t ∣ EXCEPTION
type-synonym routput-t = page-t⇒ visible-obj-t

definition routput-f ∶∶ rstate-t⇒ raction-t⇒ routput-t where
routput-f s a p ≡

if sp-impl-subj-obj (↓s) (partition (rcurrent s)) (PAGE p) READ then
VALUE (obj (↓s) (PAGE p))

else
EXCEPTION

The precondition for the generic model. Note that atomic-step-invariant is already part of the state.

definition rprecondition ∶∶ rstate-t⇒ rdom-t⇒ raction-t⇒ bool where
rprecondition s d a ≡ atomic-step-precondition (↓s) d a

abbreviation rinvariant
where rinvariant s ≡ True — The invariant is already in the state type.

Translate view-partitioning and interaction-allowed relations.

definition rvpeq ∶∶ rdom-t⇒ rstate-t⇒ rstate-t⇒ bool where
rvpeq u s1 s2 ≡ vpeq (partition u) (↓s1) (↓s2)

definition rifp ∶∶ rdom-t⇒ rdom-t⇒ bool where
rifp u v = Policy.ifp (partition u) (partition v)

Context Switches

definition rcswitch ∶∶ nat⇒ rstate-t⇒ rstate-t where
rcswitch n s ≡ ↑((↓s) (∣ current ∶= (SOME t . True) ∣))

4.8.3 Possible action sequences

An SK-IPC consists of three atomic actions PREP, WAIT and BUF with the same parameters.

definition is-SK-IPC ∶∶ raction-t list⇒ bool
where is-SK-IPC aseq ≡ ∃ dir partner page .

aseq = [SK-IPC dir PREP partner page,SK-IPC dir WAIT partner page,SK-IPC dir (BUF (SOME
page ′ . True)) partner page]

An SK-EV-WAIT consists of three atomic actions, one for each of the stages EV-PREP, EV-WAIT
and EV-FINISH with the same parameters.

definition is-SK-EV-WAIT ∶∶ raction-t list⇒ bool
where is-SK-EV-WAIT aseq ≡ ∃ consume .

aseq = [SK-EV-WAIT EV-PREP consume ,
SK-EV-WAIT EV-WAIT consume ,
SK-EV-WAIT EV-FINISH consume]

EURO-MILS D31.1 Page 77 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

An SK-EV-SIGNAL consists of two atomic actions, one for each of the stages EV-SIGNAL-PREP and
EV-SIGNAL-FINISH with the same parameters.

definition is-SK-EV-SIGNAL ∶∶ raction-t list⇒ bool
where is-SK-EV-SIGNAL aseq ≡ ∃ partner .

aseq = [SK-EV-SIGNAL EV-SIGNAL-PREP partner,
SK-EV-SIGNAL EV-SIGNAL-FINISH partner]

The complete attack surface consists of IPC calls, events, and noops.

definition rAS-set ∶∶ raction-t list set
where rAS-set ≡ { aseq . is-SK-IPC aseq ∨ is-SK-EV-WAIT aseq ∨ is-SK-EV-SIGNAL aseq } ∪ {[]}

4.8.4 Control

When are actions aborting, and when are actions waiting. We do not currently use the set-error-code
function yet.

abbreviation raborting
where raborting s ≡ aborting (↓s)

abbreviation rwaiting
where rwaiting s ≡ waiting (↓s)

definition rset-error-code ∶∶ rstate-t⇒ raction-t⇒ rstate-t
where rset-error-code s a ≡ s

Returns the set of threads that are involved in a certain action. For example, for an IPC call, the WAIT
stage synchronizes with the partner. This partner is involved in that action.

definition rkinvolved ∶∶ int-point-t⇒ rdom-t set
where rkinvolved a ≡
case a of SK-IPC dir WAIT partner page⇒ {partner}
∣ SK-EV-SIGNAL EV-SIGNAL-FINISH partner => {partner}
∣ -⇒ {}

abbreviation rinvolved ∶∶ int-point-t option⇒ rdom-t set
where rinvolved ≡ Kernel.involved rkinvolved

4.8.5 Discharging the proof obligations

lemma inst-vpeq-rel∶
shows rvpeq-refl∶ rvpeq u s s

and rvpeq-sym∶ rvpeq u s1 s2Ô⇒ rvpeq u s2 s1
and rvpeq-trans∶ [[rvpeq u s1 s2; rvpeq u s2 s3]]Ô⇒ rvpeq u s1 s3
unfolding rvpeq-def using vpeq-rel by metis+

lemma inst-ifp-refl∶
shows ∀ u . rifp u u

unfolding rifp-def using Policy-properties.ifp-reflexive by fast

lemma inst-step-atomicity [simp]∶
shows ∀ s a . rcurrent (rstep s a) = rcurrent s

unfolding rstep-def rcurrent-def
using atomic-step-does-not-change-current-thread rstate-up-down rstate-invariant atomic-step-preserves-invariants

by auto

lemma inst-weakly-step-consistent∶
assumes rvpeq u s t

EURO-MILS D31.1 Page 78 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

and rvpeq (rcurrent s) s t
and rcurrent s = rcurrent t
and rprecondition s (rcurrent s) a
and rprecondition t (rcurrent t) a

shows rvpeq u (rstep s a) (rstep t a)
using assms atomic-step-weakly-step-consistent rstate-invariant atomic-step-preserves-invariants
unfolding rcurrent-def rstep-def rvpeq-def rprecondition-def
by auto

lemma inst-local-respect∶
assumes not-ifp∶ ¬rifp (rcurrent s) u

and prec∶ rprecondition s (rcurrent s) a
shows rvpeq u s (rstep s a)

using assms atomic-step-respects-policy rstate-invariant atomic-step-preserves-invariants
unfolding rifp-def rprecondition-def rvpeq-def rstep-def rcurrent-def
by auto

lemma inst-output-consistency∶
assumes rvpeq∶ rvpeq (rcurrent s) s t
and current-eq∶ rcurrent s = rcurrent t
shows routput-f s a = routput-f t a

proof−
have ∀ a s t. rvpeq (rcurrent s) s t ∧ rcurrent s = rcurrent t Ð→ routput-f s a = routput-f t a

proof−
{ fix a ∶∶ raction-t

fix s t ∶∶ rstate-t
fix p ∶∶ page-t
assume 1∶ rvpeq (rcurrent s) s t

and 2∶ rcurrent s = rcurrent t
let ?part = partition (rcurrent s)
have routput-f s a p = routput-f t a p

proof (cases Policy.sp-spec-subj-obj ?part (PAGE p) READ
rule∶ case-split [case-names Allowed Denied])

case Allowed
have 5∶ obj (↓s) (PAGE p) = obj (↓t) (PAGE p)

using 1 Allowed unfolding rvpeq-def vpeq-def vpeq-obj-def by auto
have 6∶ sp-impl-subj-obj (↓s) ?part (PAGE p) READ = sp-impl-subj-obj (↓t) ?part (PAGE p) READ
using 1 2 Allowed unfolding rvpeq-def vpeq-def vpeq-subj-obj-def by auto

show routput-f s a p = routput-f t a p
unfolding routput-f-def using 2 5 6 by auto

next case Denied
hence sp-impl-subj-obj (↓s) ?part (PAGE p) READ = False

and sp-impl-subj-obj (↓t) ?part (PAGE p) READ = False
using rstate-invariant unfolding atomic-step-invariant-def sp-subset-def
by auto

thus routput-f s a p = routput-f t a p
using 2 unfolding routput-f-def by simp

qed }
thus ∀ a s t. rvpeq (rcurrent s) s t ∧ rcurrent s = rcurrent t Ð→ routput-f s a = routput-f t a

by auto
qed

thus ?thesis using assms by auto

EURO-MILS D31.1 Page 79 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

qed

lemma inst-cswitch-independent-of-state∶
assumes rcurrent s = rcurrent t
shows rcurrent (rcswitch n s) = rcurrent (rcswitch n t)

using rstate-invariant cswitch-preserves-invariants unfolding rcurrent-def rcswitch-def by simp

lemma inst-cswitch-consistency∶
assumes rvpeq u s t
shows rvpeq u (rcswitch n s) (rcswitch n t)

proof−
have 1∶ vpeq (partition u) (↓s) ↓(rcswitch n s)
using rstate-invariant cswitch-consistency-and-respect cswitch-preserves-invariants
unfolding rcswitch-def

by auto
have 2∶ vpeq (partition u) (↓t) ↓(rcswitch n t)
using rstate-invariant cswitch-consistency-and-respect cswitch-preserves-invariants
unfolding rcswitch-def

by auto
from 1 2 assms show ?thesis unfolding rvpeq-def using vpeq-rel by metis

qed

For the PREP stage (the first stage of the IPC action sequence) the precondition is True.

lemma prec-first-IPC-action∶
assumes is-SK-IPC aseq
shows rprecondition s d (hd aseq)

using assms
unfolding is-SK-IPC-def rprecondition-def atomic-step-precondition-def
by auto

For the the first stage of the EV-WAIT action sequence the precondition is True.

lemma prec-first-EV-WAIT-action∶
assumes is-SK-EV-WAIT aseq

shows rprecondition s d (hd aseq)
using assms
unfolding is-SK-EV-WAIT-def rprecondition-def atomic-step-precondition-def
by auto

For the first stage of the EV-SIGNAL action sequence the precondition is True.

lemma prec-first-EV-SIGNAL-action∶
assumes is-SK-EV-SIGNAL aseq

shows rprecondition s d (hd aseq)
using assms
unfolding is-SK-EV-SIGNAL-def rprecondition-def atomic-step-precondition-def

ev-signal-precondition-def
by auto

When not waiting or aborting, the precondition is “1-step inductive”, that is at all times the precon-
dition holds initially (for the first step of an action sequence) and after doing one step.

lemma prec-after-IPC-step∶
assumes prec∶ rprecondition s (rcurrent s) (aseq ! n)

and n-bound∶ Suc n < length aseq
and IPC∶ is-SK-IPC aseq
and not-aborting∶ ¬raborting s (rcurrent s) (aseq ! n)
and not-waiting∶ ¬rwaiting s (rcurrent s) (aseq ! n)

EURO-MILS D31.1 Page 80 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

shows rprecondition (rstep s (aseq ! n)) (rcurrent s) (aseq ! Suc n)
proof−
{

fix dir partner page
let ?page ′ = (SOME page ′ . True)
assume IPC∶ aseq = [SK-IPC dir PREP partner page,SK-IPC dir WAIT partner page,SK-IPC dir (BUF ?page ′)

partner page]
{

assume 0∶ n=0
from 0 IPC prec not-aborting

have ?thesis
unfolding rprecondition-def atomic-step-precondition-def rstep-def rcurrent-def atomic-step-def atomic-step-ipc-def

aborting-def
by(auto)

}
moreover
{

assume 1∶ n=1
from 1 IPC prec not-waiting

have ?thesis
unfolding rprecondition-def atomic-step-precondition-def rstep-def rcurrent-def atomic-step-def atomic-step-ipc-def

waiting-def
by(auto)

}
moreover
from IPC

have length aseq = 3
by auto

ultimately
have ?thesis
using n-bound
by arith

}
thus ?thesis

using IPC
unfolding is-SK-IPC-def
by(auto)

qed

When not waiting or aborting, the precondition is 1-step inductive.

lemma prec-after-EV-WAIT-step∶
assumes prec∶ rprecondition s (rcurrent s) (aseq ! n)

and n-bound∶ Suc n < length aseq
and IPC∶ is-SK-EV-WAIT aseq
and not-aborting∶ ¬raborting s (rcurrent s) (aseq ! n)
and not-waiting∶ ¬rwaiting s (rcurrent s) (aseq ! n)

shows rprecondition (rstep s (aseq ! n)) (rcurrent s) (aseq ! Suc n)
proof−
{

fix consume

assume WAIT ∶ aseq = [SK-EV-WAIT EV-PREP consume,
SK-EV-WAIT EV-WAIT consume,
SK-EV-WAIT EV-FINISH consume]

{
assume 0∶ n=0
from 0 WAIT prec not-aborting

have ?thesis

EURO-MILS D31.1 Page 81 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

unfolding rprecondition-def atomic-step-precondition-def
by(auto)

}
moreover
{

assume 1∶ n=1
from 1 WAIT prec not-waiting

have ?thesis
unfolding rprecondition-def atomic-step-precondition-def
by(auto)

}
moreover
from WAIT

have length aseq = 3
by auto

ultimately
have ?thesis
using n-bound
by arith

}
thus ?thesis

using assms
unfolding is-SK-EV-WAIT-def
by auto

qed

When not waiting or aborting, the precondition is 1-step inductive.

lemma prec-after-EV-SIGNAL-step∶
assumes prec∶ rprecondition s (rcurrent s) (aseq ! n)

and n-bound∶ Suc n < length aseq
and SIGNAL∶ is-SK-EV-SIGNAL aseq
and not-aborting∶ ¬raborting s (rcurrent s) (aseq ! n)
and not-waiting∶ ¬rwaiting s (rcurrent s) (aseq ! n)

shows rprecondition (rstep s (aseq ! n)) (rcurrent s) (aseq ! Suc n)
proof−
{ fix partner

assume SIGNAL1∶ aseq = [SK-EV-SIGNAL EV-SIGNAL-PREP partner,
SK-EV-SIGNAL EV-SIGNAL-FINISH partner]

{
assume 0∶ n=0
from 0 SIGNAL1 prec not-aborting

have ?thesis
unfolding rprecondition-def atomic-step-precondition-def ev-signal-precondition-def

aborting-def rstep-def atomic-step-def
by auto

}
moreover
from SIGNAL1

have length aseq = 2
by auto

ultimately
have ?thesis
using n-bound
by arith

}
thus ?thesis

using assms
unfolding is-SK-EV-SIGNAL-def

EURO-MILS D31.1 Page 82 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

by auto
qed

lemma on-set-object-value∶
shows sp-impl-subj-subj (set-object-value ob val s) = sp-impl-subj-subj s

and sp-impl-subj-obj (set-object-value ob val s) = sp-impl-subj-obj s
unfolding set-object-value-def apply simp+ done

lemma prec-IPC-dom-independent∶
assumes current s /= d

and atomic-step-invariant s
and atomic-step-precondition s d a

shows atomic-step-precondition (atomic-step-ipc (current s) dir stage partner page s) d a
using assms on-set-object-value
unfolding atomic-step-precondition-def atomic-step-ipc-def ipc-precondition-def

ev-signal-precondition-def set-object-value-def
by (auto split add∶ int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits

ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)

lemma prec-ev-signal-dom-independent∶
assumes current s /= d

and atomic-step-invariant s
and atomic-step-precondition s d a

shows atomic-step-precondition (atomic-step-ev-signal (current s) partner s) d a
using assms on-set-object-value
unfolding atomic-step-precondition-def atomic-step-ev-signal-def ipc-precondition-def

ev-signal-precondition-def set-object-value-def
by (auto split add∶ int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits

ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)

lemma prec-ev-wait-one-dom-independent∶
assumes current s /= d

and atomic-step-invariant s
and atomic-step-precondition s d a

shows atomic-step-precondition (atomic-step-ev-wait-one (current s) s) d a
using assms on-set-object-value
unfolding atomic-step-precondition-def atomic-step-ev-wait-one-def ipc-precondition-def

ev-signal-precondition-def set-object-value-def
by (auto split add∶ int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits

ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)

lemma prec-ev-wait-all-dom-independent∶
assumes current s /= d

and atomic-step-invariant s
and atomic-step-precondition s d a

shows atomic-step-precondition (atomic-step-ev-wait-all (current s) s) d a
using assms on-set-object-value
unfolding atomic-step-precondition-def atomic-step-ev-wait-all-def ipc-precondition-def

ev-signal-precondition-def set-object-value-def
by (auto split add∶ int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits

ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)

lemma prec-dom-independent∶
shows ∀ s d a a ′ . rcurrent s /= d ∧ rprecondition s d a Ð→ rprecondition (rstep s a ′) d a
using atomic-step-preserves-invariants
rstate-invariant prec-IPC-dom-independent prec-ev-signal-dom-independent
prec-ev-wait-all-dom-independent prec-ev-wait-one-dom-independent

EURO-MILS D31.1 Page 83 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

unfolding rcurrent-def rprecondition-def rstep-def atomic-step-def
by(auto split add∶ int-point-t.splits ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)

lemma ipc-precondition-after-cswitch[simp]∶
shows ipc-precondition d dir partner page ((↓ s)(∣current ∶= new-current∣))

= ipc-precondition d dir partner page (↓ s)
using assms
unfolding ipc-precondition-def
by(auto split add∶ ipc-direction-t.splits)

lemma precondition-after-cswitch∶
shows ∀ s d n a. rprecondition s d a Ð→ rprecondition (rcswitch n s) d a
using cswitch-preserves-invariants rstate-invariant
unfolding rprecondition-def rcswitch-def atomic-step-precondition-def

ev-signal-precondition-def
by (auto split add∶ int-point-t.splits ipc-stage-t.splits ev-signal-stage-t.splits)

lemma aborting-switch-independent∶
shows ∀n s. raborting (rcswitch n s) = raborting s
proof−
{

fix n s
{

fix tid a
have raborting (rcswitch n s) tid a = raborting s tid a
using rstate-invariant cswitch-preserves-invariants ev-signal-precondition-weakly-step-consistent

cswitch-consistency-and-respect
unfolding aborting-def rcswitch-def
apply (auto split add∶ int-point-t.splits ipc-stage-t.splits

ev-wait-stage-t.splits ev-signal-stage-t.splits)
apply (metis (full-types))
by blast

}
hence raborting (rcswitch n s) = raborting s by auto
}
thus ?thesis by auto
qed
lemma waiting-switch-independent∶
shows ∀n s. rwaiting (rcswitch n s) = rwaiting s
proof−
{

fix n s
{

fix tid a
have rwaiting (rcswitch n s) tid a = rwaiting s tid a

using rstate-invariant cswitch-preserves-invariants
unfolding waiting-def rcswitch-def
by(auto split add∶ int-point-t.splits ipc-stage-t.splits ev-wait-stage-t.splits)

}
hence rwaiting (rcswitch n s) = rwaiting s by auto
}
thus ?thesis by auto
qed

lemma aborting-after-IPC-step∶
assumes d1 /= d2
shows aborting (atomic-step-ipc d1 dir stage partner page s) d2 a = aborting s d2 a

EURO-MILS D31.1 Page 84 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

unfolding atomic-step-ipc-def aborting-def set-object-value-def ipc-precondition-def
ev-signal-precondition-def

by(auto split add∶ int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits
ev-signal-stage-t.splits)

lemma waiting-after-IPC-step∶
assumes d1 /= d2
shows waiting (atomic-step-ipc d1 dir stage partner page s) d2 a = waiting s d2 a
unfolding atomic-step-ipc-def waiting-def set-object-value-def ipc-precondition-def
by(auto split add∶ int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits

ev-wait-stage-t.splits)

lemma raborting-consistent∶
shows ∀ s t u. rvpeq u s t Ð→ raborting s u = raborting t u
proof−
{

fix s t u
assume vpeq∶ rvpeq u s t
{

fix a
from vpeq ipc-precondition-weakly-step-consistent rstate-invariant

have ⋀ tid dir partner page . ipc-precondition u dir partner page (↓s)
= ipc-precondition u dir partner page (↓t)

unfolding rvpeq-def
by auto

with vpeq rstate-invariant have raborting s u a = raborting t u a
unfolding aborting-def rvpeq-def vpeq-def vpeq-local-def ev-signal-precondition-def

vpeq-subj-subj-def atomic-step-invariant-def sp-subset-def rep-def
apply (auto split add∶ int-point-t.splits ipc-stage-t.splits ev-signal-stage-t.splits)
by blast

}
hence raborting s u = raborting t u by auto
}
thus ?thesis by auto
qed

lemma aborting-dom-independent∶
assumes rcurrent s /= d

shows raborting (rstep s a) d a ′ = raborting s d a ′

proof −
have ⋀ tid dir partner page s . ipc-precondition tid dir partner page s = ipc-precondition tid dir partner page

(atomic-step s a)
∧ ev-signal-precondition tid partner s = ev-signal-precondition tid partner (atomic-step s a)

proof −
fix tid dir partner page s
let ?s = atomic-step s a
have (∀ p q . sp-impl-subj-subj s p q = sp-impl-subj-subj ?s p q)
∧ (∀ p x m . sp-impl-subj-obj s p x m = sp-impl-subj-obj ?s p x m)

unfolding atomic-step-def atomic-step-ipc-def
atomic-step-ev-wait-all-def atomic-step-ev-wait-one-def
atomic-step-ev-signal-def set-object-value-def

by (auto split add∶ int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits
ev-wait-stage-t.splits ev-consume-t.splits ev-signal-stage-t.splits)

thus ipc-precondition tid dir partner page s = ipc-precondition tid dir partner page (atomic-step s a)

EURO-MILS D31.1 Page 85 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

∧ ev-signal-precondition tid partner s = ev-signal-precondition tid partner (atomic-step s a)
unfolding ipc-precondition-def ev-signal-precondition-def by simp

qed
moreover have ⋀ b . (↓(↑(atomic-step (↓s) b))) = atomic-step (↓s) b

using rstate-invariant atomic-step-preserves-invariants rstate-up-down by auto
ultimately show ?thesis

unfolding aborting-def rstep-def ev-signal-precondition-def

by (simp split add∶ int-point-t.splits ipc-stage-t.splits ev-wait-stage-t.splits
ev-signal-stage-t.splits)

qed

lemma ipc-precondition-of-partner-consistent∶
assumes vpeq∶ ∀ d ∈ rkinvolved (SK-IPC dir WAIT partner page) . rvpeq d s t
shows ipc-precondition partner dir ′ u page ′ (↓ s) = ipc-precondition partner dir ′ u page ′ ↓ t
proof−
from assms ipc-precondition-weakly-step-consistent rstate-invariant

show ?thesis
unfolding rvpeq-def rkinvolved-def
by auto

qed

lemma ev-signal-precondition-of-partner-consistent∶
assumes vpeq∶ ∀ d ∈ rkinvolved (SK-EV-SIGNAL EV-SIGNAL-FINISH partner) . rvpeq d s t
shows ev-signal-precondition partner u (↓ s) = ev-signal-precondition partner u (↓ t)
proof−
from assms ev-signal-precondition-weakly-step-consistent rstate-invariant

show ?thesis
unfolding rvpeq-def rkinvolved-def
by auto

qed

lemma waiting-consistent∶
shows ∀ s t u a . rvpeq (rcurrent s) s t ∧ (∀ d ∈ rkinvolved a . rvpeq d s t)

∧ rvpeq u s t
Ð→ rwaiting s u a = rwaiting t u a

proof−
{

fix s t u a
assume vpeq∶ rvpeq (rcurrent s) s t
assume vpeq-involved∶ ∀ d ∈ rkinvolved a . rvpeq d s t
assume vpeq-u∶ rvpeq u s t
have rwaiting s u a = rwaiting t u a proof (cases a)

case SK-IPC
thus rwaiting s u a = rwaiting t u a
using ipc-precondition-of-partner-consistent vpeq-involved
unfolding waiting-def by (auto split add∶ ipc-stage-t.splits)

next case SK-EV-WAIT
thus rwaiting s u a = rwaiting t u a

using ev-signal-precondition-of-partner-consistent
vpeq-involved vpeq vpeq-u
unfolding waiting-def rkinvolved-def ev-signal-precondition-def

rvpeq-def vpeq-def vpeq-local-def
by (auto split add∶ ipc-stage-t.splits ev-wait-stage-t.splits ev-consume-t.splits)

qed (simp add∶ waiting-def , simp add∶ waiting-def)
}
thus ?thesis by auto

EURO-MILS D31.1 Page 86 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

qed

lemma ipc-precondition-ensures-ifp∶
assumes ipc-precondition (current s) dir partner page s

and atomic-step-invariant s
shows rifp partner (current s)
proof −

let ?sp = λ t1 t2 . Policy.sp-spec-subj-subj (partition t1) (partition t2)
have ?sp (current s) partner ∨ ?sp partner (current s)

using assms unfolding ipc-precondition-def atomic-step-invariant-def sp-subset-def
by (cases dir, auto)

thus ?thesis
unfolding rifp-def using Policy-properties.ifp-compatible-with-sp-spec by auto

qed

lemma ev-signal-precondition-ensures-ifp∶
assumes ev-signal-precondition (current s) partner s

and atomic-step-invariant s
shows rifp partner (current s)
proof −

let ?sp = λ t1 t2 . Policy.sp-spec-subj-subj (partition t1) (partition t2)
have ?sp (current s) partner ∨ ?sp partner (current s)

using assms unfolding ev-signal-precondition-def atomic-step-invariant-def sp-subset-def
by (auto)

thus ?thesis
unfolding rifp-def using Policy-properties.ifp-compatible-with-sp-spec by auto

qed

lemma involved-ifp∶
shows ∀ s a . ∀ d ∈ rkinvolved a . rprecondition s (rcurrent s) a Ð→ rifp d (rcurrent s)
proof−
{

fix s a d
assume d-involved∶ d ∈ rkinvolved a
assume prec∶ rprecondition s (rcurrent s) a
from d-involved prec have rifp d (rcurrent s)

using ipc-precondition-ensures-ifp ev-signal-precondition-ensures-ifp rstate-invariant
unfolding rkinvolved-def rprecondition-def atomic-step-precondition-def rcurrent-def Kernel.involved-def
by(cases a,simp,auto split add∶ int-point-t.splits ipc-stage-t.splits ev-signal-stage-t.splits)

}
thus ?thesis by auto
qed

lemma spec-of-waiting-ev∶
shows ∀ s a. rwaiting s (rcurrent s) (SK-EV-WAIT EV-FINISH EV-CONSUME-ALL)

Ð→ rstep s a = s
unfolding waiting-def
by auto

lemma spec-of-waiting-ev-w∶
shows ∀ s a. rwaiting s (rcurrent s) (SK-EV-WAIT EV-WAIT EV-CONSUME-ALL)

Ð→ rstep s (SK-EV-WAIT EV-WAIT EV-CONSUME-ALL) = s
unfolding rstep-def atomic-step-def
by (auto split add∶ int-point-t.splits ipc-stage-t.splits ev-wait-stage-t.splits)

lemma spec-of-waiting∶
shows ∀ s a. rwaiting s (rcurrent s) a Ð→ rstep s a = s

EURO-MILS D31.1 Page 87 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

unfolding waiting-def rstep-def atomic-step-def atomic-step-ipc-def
atomic-step-ev-signal-def atomic-step-ev-wait-all-def
atomic-step-ev-wait-one-def

by(auto split add∶ int-point-t.splits ipc-stage-t.splits ev-wait-stage-t.splits)
end

4.9 Link implementation to CISK: the specific separation kernel is an interpretation of
the generic model.

theory Link-separation-kernel-model-to-CISK
imports Separation-kernel-model

begin

We show that the separation kernel instantiation satisfies the specification of CISK.

theorem CISK-proof-obligations-satisfied∶
shows

Controllable-Interruptible-Separation-Kernel
rstep
routput-f
(↑s0)
rcurrent
rcswitch
rkinvolved
rifp
rvpeq
rAS-set
rinvariant
rprecondition
raborting
rwaiting
rset-error-code

proof (unfold-locales)
— show that rvpeq is equivalence relation
show ∀ a b c u. (rvpeq u a b ∧ rvpeq u b c) Ð→ rvpeq u a c
and ∀ a b u. rvpeq u a b Ð→ rvpeq u b a
and ∀ a u. rvpeq u a a
using inst-vpeq-rel by metis+

— show output consistency
show ∀ a s t. rvpeq (rcurrent s) s t ∧ rcurrent s = rcurrent t Ð→ routput-f s a = routput-f t a

using inst-output-consistency by metis
— show reflexivity of ifp
show ∀ u . rifp u u

using inst-ifp-refl by metis
— show step consistency
show ∀ s t u a. rvpeq u s t ∧ rvpeq (rcurrent s) s t ∧ True ∧ rprecondition s (rcurrent s) a ∧ True ∧ rprecondition

t (rcurrent t) a ∧ rcurrent s = rcurrent t Ð→
rvpeq u (rstep s a) (rstep t a)

using inst-weakly-step-consistent by blast
— show step atomicity
show ∀ s a . rcurrent (rstep s a) = rcurrent s

using inst-step-atomicity by metis
show ∀a s u. ¬ rifp (rcurrent s) u ∧ True ∧ rprecondition s (rcurrent s) a Ð→ rvpeq u s (rstep s a)

using inst-local-respect by blast
— show cswitch is independent of state
show ∀n s t. rcurrent s = rcurrent t Ð→ rcurrent (rcswitch n s) = rcurrent (rcswitch n t)

using inst-cswitch-independent-of-state by metis
— show cswitch consistency

EURO-MILS D31.1 Page 88 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

show ∀u s t n. rvpeq u s t Ð→ rvpeq u (rcswitch n s) (rcswitch n t)
using inst-cswitch-consistency by metis

— Show the empt action sequence is in AS-set
show [] ∈ rAS-set

unfolding rAS-set-def
by auto

— The invariant for the initial state, already encoded in rstate-t
show True

by auto
— Step function of the invariant, already encoded in rstate-t
show ∀ s n. True Ð→ True

by auto
— The precondition does not change with a context switch
show ∀ s d n a. rprecondition s d a Ð→ rprecondition (rcswitch n s) d a

using precondition-after-cswitch by blast
— The precondition holds for the first action of each action sequence
show ∀ s d aseq. True ∧ aseq ∈ rAS-set ∧ aseq /= [] Ð→ rprecondition s d (hd aseq)

using prec-first-IPC-action prec-first-EV-WAIT-action prec-first-EV-SIGNAL-action
unfolding rAS-set-def is-sub-seq-def
by auto

— The precondition holds for the next action in an action sequence, assuming the sequence is not aborted or
delayed

show ∀ s a a ′. (∃aseq∈rAS-set. is-sub-seq a a ′ aseq) ∧ True ∧ rprecondition s (rcurrent s) a ∧ ¬ raborting s
(rcurrent s) a ∧ ¬ rwaiting s (rcurrent s) a Ð→

rprecondition (rstep s a) (rcurrent s) a ′

using prec-after-IPC-step prec-after-EV-SIGNAL-step prec-after-EV-WAIT-step
unfolding rAS-set-def is-sub-seq-def
by auto

— Steps of other domains do not influence the precondition
show ∀ s d a a ′. rcurrent s /= d ∧ rprecondition s d a Ð→ rprecondition (rstep s a ′) d a
using prec-dom-independent by blast

— The invariant
show ∀ s a. True Ð→ True

by auto
— Aborting does not depend on a context switch
show ∀n s. raborting (rcswitch n s) = raborting s

using aborting-switch-independent by auto
— Aborting does not depend on actions of other domains
show ∀ s a d. rcurrent s /= d Ð→ raborting (rstep s a) d = raborting s d
using aborting-dom-independent by auto

— Aborting is consistent
show ∀ s t u. rvpeq u s t Ð→ raborting s u = raborting t u

using raborting-consistent by auto
— Waiting does not depend on a context switch
show ∀n s. rwaiting (rcswitch n s) = rwaiting s

using waiting-switch-independent by auto
— Waiting is consistent
show ∀ s t u a. rvpeq (rcurrent s) s t ∧ (∀ d ∈ rkinvolved a . rvpeq d s t)

∧ rvpeq u s t
Ð→ rwaiting s u a = rwaiting t u a

unfolding Kernel.involved-def
using waiting-consistent by auto

— Domains that are involved in an action may influence the domain of the action
show ∀ s a. ∀ d ∈ rkinvolved a. rprecondition s (rcurrent s) a Ð→ rifp d (rcurrent s)
using involved-ifp by blast

— An action that is waiting does not change the state
show ∀ s a. rwaiting s (rcurrent s) a Ð→ rstep s a = s

EURO-MILS D31.1 Page 89 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

using spec-of-waiting by blast
— Proof obligations for set-error-code. Right now, they are all trivial
show ∀ s d a ′ a. rcurrent s /= d ∧ raborting s d a Ð→ raborting (rset-error-code s a ′) d a

unfolding rset-error-code-def
by auto

show ∀ s t u a. rvpeq u s t Ð→ rvpeq u (rset-error-code s a) (rset-error-code t a)
unfolding rset-error-code-def
by auto

show ∀ s u a. ¬ rifp (rcurrent s) uÐ→ rvpeq u s (rset-error-code s a)
unfolding rset-error-code-def
by (metis ⟨∀a u. rvpeq u a a⟩)

show ∀ s a. rcurrent (rset-error-code s a) = rcurrent s
unfolding rset-error-code-def
by auto

show ∀ s d a a ′. rprecondition s d a ∧ raborting s (rcurrent s) a ′Ð→ rprecondition (rset-error-code s a ′) d a
unfolding rset-error-code-def
by auto

show ∀ s d a ′ a. rcurrent s /= d ∧ rwaiting s d a Ð→ rwaiting (rset-error-code s a ′) d a
unfolding rset-error-code-def
by auto

qed

Now we can instantiate CISK with some initial state, interrupt function, etc.

interpretation Inst∶
Controllable-Interruptible-Separation-Kernel

rstep — step function, without program stack
routput-f — output function
↑s0 — initial state
rcurrent — returns the currently active domain
rcswitch — switches the currently active domain
(op =) 42 — interrupt function (yet unspecified)
rkinvolved — returns a set of threads involved in the give action
rifp — information flow policy
rvpeq — view partitioning
rAS-set — the set of valid action sequences
rinvariant — the state invariant
rprecondition — the precondition for doing an action
raborting — condition under which an action is aborted
rwaiting — condition under which an action is delayed
rset-error-code — updates the state. Has no meaning in the current model.

using CISK-proof-obligations-satisfied by auto

The main theorem: the instantiation implements the information flow policy ifp.

theorem risecure∶
Inst.isecure

using Inst.unwinding-implies-isecure-CISK
by blast

end

5 Related Work

We consider various definitions of intransitive (I) nonin- terference (NI). This overview is by no means
intended to be complete. We first prune the field by focusing on INI with as granularity the domains: if
the security policy states the act “v ↝ u”, this means domain v is permitted to flow any information it has
at its disposal to u. We do not consider language-based approaches to noninterference [26], which allow

EURO-MILS D31.1 Page 90 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

finer granularity mechanisms (i.e., flowing just a subset of the available information). Secondly, several
formal verification efforts have been conducted concerning properties similar and related to INI such as
no-exfiltration and no-infiltration [9]. Heitmeyer et al. prove these properties for a separation kernel in
a Common Criteria certification process [11] (which kernel and which EAL is not clear). Martin et al.
proved separation properties over the MASK kernel [18] and Shapiro and Weber verified correctness of
the EROS confinement mechanism [28]. Klein provides an excellent overview of OSs for which such
properties have been verified [13]. Thirdly, INI definitions can be built upon either state-based automata,
trace-based models, or process algebraic models [30]. We do not focus on the latter, as our approach is
not based on process algebra.

Transitive NI was first introduced by Goguen and Meseguer in 1982 [7] and has been the topic of
heavy research since. Goguen and Meseguer tried to extend their definition with an unless construct
to allow such policies [8]. This construct, however, did not capture the notion of INI [17]. The first
commonly accepted definition of INI is Rushbys purging-based definition IP-secure [24]. IP- security
has been applied to, e.g., smartcards [27] and OS kernel extensions [?]. To the best of our knowledge,
Rushbys definition has not been applied in a certification context. Rushbys definition has been subject to
heavy scrutiny [22], [29] and a vast array of modifications have been proposed.

Roscoe and Goldsmith provide CSP-based definitions of NI for the transitive and the intransitive case,
here dubbed as lazy and mixed independence. The latter one is more restrictive than Rushbys IP-security.
Their critique on IP-secure, however, is not universally accepted [?]. Greve at al. provided the GWV
framework developed in ACL2 [9]. Their definition is a non-inductive version of noninterference similar
to Rushbys step consistency. GWV has been used on various industrial systems. The exact relation
between GWV and (I)P-secure, i.e., whether they are of equal strength, is still open. The second property,
Declassification, means whether the definition allows assignments in the form of l ∶= declassify(h)
(where we use Sabelfelds [26] notation for high and low variables). Information flows from h to l,
but only after it has been declassified. In general, NI is coarser than declassification. It allows where
downgrading can occur, but now what may be downgraded [17]. Mantel provides a definition of transitive
NI where exceptions can be added to allow de-classification by adding intransitive exceptions to the
security policy [17].

To deal with concurrency, definitions of NI have been proposed for Non-Deterministic automata. Von
Oheimb defined noninfluence for such systems. His definition can be regarded as a “non-deterministic
version” of IP-secure. Engelhardt et al. defined nTA-secure, the non-deterministic version of TA-
security. Finally, some notions of INI consider models that are in a sense richer than similar counterparts.
Leslie extends Rushbys notion of IP-security for a model in which the security policy is Dynamic. Eggert
et al. defined i-secure, an extension of IP-secure. Their model extends Rushbys model (Mealy machines)
with Local security policies. Murray et al. extends Von Oheimb definition of noninfluence to apply to
a model that does not assume a static mapping of actions to domains. This makes it applicable to OSs,
as in such a setting such a mapping does not exist [20]. NI-OS has been applied to the seL4 separation
kernel [20], [14].

Most definitions have an associated methodology. Various methodologies are based on unwinding
[8]. This breaks down the proof of NI into smaller proof obligations (POs). These POs can be checked
by some manual proof [24], [10], model checking [32] or dedicated algorithms [5]. The methodology of
Murray et al. is a combination of unwinding, automated deduction and manual proofs. Some definitions
are undecidable and have no suitable unwinding.

We are aiming to provide a methodology for INI based on a model that is richer in detail than Mealy
machines. This places our contribution next to other works that aim to extend IP-security [15], [4] in
Figure 2. Similar to those approaches, we take IP-security as a starting point. We add kernel control
mechanisms, interrupts and context switches. Ideally, we would simply prove IP-security over CISK.
We argue that this is impossible and that a rephrasing is necessary.

Our ultimate goal — certification of PikeOS — is very similar to the work done on seL4 [20][19].
There are two reasons why their approach is not directly applicable to PikeOS. First, seL4 has been
developed from scratch. A Haskell specification serves as the medium for the implementation as well

EURO-MILS D31.1 Page 91 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

as the system model for the kernel [6]. C code is derived from a high level specification. PikeOS, in
contrast, is an established industrial OS. Secondly, interrupts are mostly disabled in seL4. Klein et al.
side-step dealing with the verification complexity of interrupts by using a mostly atomic API [14]. In
contrast, we aim to fully address interrupts.

With respect to attempts to formal operating system verifications, notable works are also the Verisoft
I project [1] where also a weak form of a separation property, namely fairness of execution was addressed
[3].

6 Conclusion

We have introduced a generic theory of intransitive non-interference for separation kernels with control
as a series of locales and extensible record definitions in order to a achieve a modular organization.
Moreover, we have shown that it can be instantiated for a simplistic API consisting of IPC and events.

In the ongoing EURO-MILS project, we will extend this generic theory in order make it sufficiently
rich to be instantiated with a realistic functional model of PikeOS.

6.0.1 Acknowledgement.

This work corresponds to the formal deliverable D31.1 of the Euro-MILS project funded by the European
Unions Programme

FP7/2007 − 2013

under grant agreement number ICT-318353.

References

[1] E. Alkassar, M. A. Hillebrand, D. Leinenbach, N. Schirmer, A. Starostin, and A. Tsyban. Balancing
the load. J. Autom. Reasoning, 42(2-4):389–454, 2009.

[2] J. Brygier, R. Fuchsen, and H. Blasum. Pikeos: Safe and secure virtualization in a separation
microkernel. Technical report, 2009.

[3] M. Daum, J. Dörrenbächer, and B. Wolff. Proving fairness and implementation correctness of a
microkernel scheduler. J. Autom. Reasoning, 42(2-4):349–388, 2009.

[4] S. Eggert, H. Schnoor, and T. Wilke. Noninterference with local policies. In K. Chatterjee and
J. Sgall, editors, Mathematical Foundations of Computer Science 2013, volume 8087 of Lecture
Notes in Computer Science, pages 337–348. Springer Berlin Heidelberg, 2013.

[5] S. Eggert, R. van der Meyden, H. Schnoor, and T. Wilke. The complexity of intransitive noninter-
ference. In IEEE Symposium on Security and Privacy, pages 196–211, 2011.

[6] K. Elphinstone, G. Klein, P. Derrin, T. Roscoe, and G. Heiser. Towards a practical, verified kernel.
In Proceedings of the 11th USENIX Workshop on Hot Topics in Operating Systems, HOTOS’07,
pages 20:1–20:6, Berkeley, CA, USA, 2007. USENIX Association.

[7] J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE Symposium on
Security and Privacy, pages 11–20, 1984.

[8] J. A. Goguen and J. Meseguer. Unwinding and inference control. In IEEE Symposium on Security
and Privacy, pages 75–87, 1984.

[9] D. Greve, M. Wilding, and W. M. Vanfleet. A separation kernel formal security policy. In Fourth
International Workshop on the ACL2 Prover and Its Applications (ACL2-2003), 2003.

EURO-MILS D31.1 Page 92 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

[10] J. Haigh and W. Young. Extending the non-interference version of mls for sat. IEEE Transactions
on Software Engineering, 13:141–150, 1987 1987.

[11] C. L. Heitmeyer, M. Archer, E. I. Leonard, and J. McLean. Formal specification and verification
of data separation in a separation kernel for an embedded system. In Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS ’06, pages 346–355, New York, NY,
USA, 2006. ACM.

[12] R. Kaiser and S. Wagner. Evolution of the PikeOS microkernel. In In: FirstInternational Workshop
on Microkernels for Embedded Systems, 2007.

[13] G. Klein. Operating system verificationan overview. Sadhana, 34(1):27–69, 2009.

[14] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel4: Formal verification of an os
kernel. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
SOSP ’09, pages 207–220, New York, NY, USA, 2009. ACM.

[15] R. Leslie. Dynamic intransitive noninterference. In IEEE International Symposium on Secure
Software Engineering, pages 75–87, 2006.

[16] J. Liedtke. On µ-kernel construction. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles, pages 237–250. ACM Press, 1995.

[17] H. Mantel. Information flow control and applications bridging a gap . In J. Oliveira and P. Zave,
editors, FME 2001: Formal Methods for Increasing Software Productivity, volume 2021 of Lecture
Notes in Computer Science, pages 153–172. Springer Berlin Heidelberg, 2001.

[18] W. Martin, P. White, F. S. Taylor, and A. Goldberg. Formal construction of the mathematically
analyzed separation kernel. In Proceedings of the 15th IEEE International Conference on Auto-
mated Software Engineering, ASE ’00, pages 133–, Washington, DC, USA, 2000. IEEE Computer
Society.

[19] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried, C. Lewis, X. Gao, and
G. Klein. sel4: from general purpose to a proof of information flow enforcement. In IEEE Sympo-
sium on Security and Privacy, pages 415–429, San Francisco, CA, May 2013.

[20] T. Murray, D. Matichuk, M. Brassil, P. Gammie, and G. Klein. Noninterference for operating
system kernels. In Chris Hawblitzel and Dale Miller, editor, The Second International Conference
on Certified Programs and Proofs, pages 126–142, Kyoto, dec 2012. Springer.

[21] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/hol: a proof assistant for higher- order logic.
2012.

[22] A. W. Roscoe. What is intransitive noninterference. In In Proc. of the 12th IEEE Computer Security
Foundations Workshop, pages 228–238, 1999.

[23] J. Rushby. Design and verification of secure systems. ACM SIGOPS Operating Systems Review,
15:12–21, 1981.

[24] J. Rushby. Noninterference, transitivity, and channel-control security policies. Technical report,
dec 1992.

[25] J. Rushby. Noninterference, transitivity, and channel-control security policies. Technical report,
dec 1992.

EURO-MILS D31.1 Page 93 of 94

D31.1 – Formal Specification of a Generic Separation Kernel

[26] A. Sabelfeld and A. C. Myers. Language-based information-flow security,. Selected Areas in
Communications, IEEE Journal on,, 21(1):519, 2003.

[27] G. Schellhorn, W. Reif, A. Schairer, P. Karger, V. Austel, and D. Toll. Verification of a formal
security model for multiapplicative smart cards. In F. Cuppens, Y. Deswarte, D. Gollmann, and
M. Waidner, editors, Computer Security - ESORICS 2000, volume 1895 of Lecture Notes in Com-
puter Science, pages 17–36. Springer Berlin Heidelberg, 2000.

[28] J. S. Shapiro and S. Weber. Verifying the eros confinement mechanism. In Proceedings of the 2000
IEEE Symposium on Security and Privacy, SP ’00, pages 166–, Washington, DC, USA, 2000. IEEE
Computer Society.

[29] R. Van Der Meyden. What, indeed, is intransitive noninterference? In Proceedings of the 12th
European Conference on Research in Computer Security, ESORICS’07, pages 235–250, Berlin,
Heidelberg, 2007. Springer-Verlag.

[30] R. van der Meyden and C. Zhang. A comparison of semantic models for noninterference. Theoret-
ical Computer Science, 411(47):4123 – 4147, 2010.

[31] F. Verbeek, J. Schmaltz, S. Tverdyshev, H. Blasum, and O. Havle. A new theory of intransitive
noninterference for separation kernels with control (manuscript), 2013.

[32] M. Whalen, D. Greve, and L. Wagner. Model checking information flow. In D. S. Hardin, editor,
Design and Verification of Microprocessor Systems for High-Assurance Applications, pages 381–
428. Springer US, 2010.

EURO-MILS D31.1 Page 94 of 94

	Introduction
	Preliminaries
	Binders for the option type
	Theorems on lists

	A generic model for separation kernels
	K (Kernel)
	Execution semantics

	SK (Separation Kernel)
	Security for non-interfering domains
	Security for indirectly interfering domains

	ISK (Interruptible Separation Kernel)
	CISK (Controlled Interruptible Separation Kernel)
	Execution semantics
	Formulations of security
	Proofs

	Instantiation by a separation kernel with concrete actions
	Model of a separation kernel configuration
	Type definitions
	Configuration

	Formulation of a subject-subject communication policy and an information flow policy, and showing both can be derived from subject-object configuration data
	Specification
	Derivation

	Separation kernel state and atomic step function
	Interrupt points
	System state
	Atomic step

	Preconditions and invariants for the atomic step
	Atomic steps of SK_IPC preserve invariants
	Summary theorems on atomic step invariants

	The view-partitioning equivalence relation
	Elementary properties

	Atomic step locally respects the information flow policy
	Locally respects of atomic step functions
	Summary theorems on view-partitioning locally respects

	Weak step consistency
	Weak step consistency of auxiliary functions
	Weak step consistency of atomic step functions
	Summary theorems on view-partitioning weak step consistency

	Separation kernel model
	Initial state of separation kernel model
	Types for instantiation of the generic model
	Possible action sequences
	Control
	Discharging the proof obligations

	Link implementation to CISK: the specific separation kernel is an interpretation of the generic model.

	Related Work
	Conclusion
	Acknowledgement.

