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Abstract
Purpose of Review The deployment of hardware (e.g., robots, satellites, etc.) to space is a costly and complex endeavor. It
is of extreme importance that on-board systems are verified and validated through a variety of verification and validation
techniques, especially in the case of autonomous systems. In this paper, we discuss a number of approaches from the
literature that are relevant or directly applied to the verification and validation of systems in space, with an emphasis on
autonomy.

Recent Findings Despite advances in individual verification and validation techniques, there is still a lack of approaches that
aim to combine different forms of verification in order to obtain system-wide verification of modular autonomous systems.

Summary This systematic review of the literature includes the current advances in the latest approaches using formal
methods for static verification (model checking and theorem proving) and runtime verification, the progress achieved so far
in the verification of machine learning, an overview of the landscape in software testing, and the importance of performing
compositional verification in modular systems. In particular, we focus on reporting the use of these techniques for the
verification and validation of systems in space with an emphasis on autonomy, as well as more general techniques (such as
in the aeronautical domain) that have been shown to have potential value in the verification and validation of autonomous
systems in space.

Keywords Verification and validation · Formal methods · Space autonomous systems

Introduction

The launch of new hardware to space is costly. Conse-
quently, the on-board software is usually limited by the

This article is part of the Topical Collection on Topical Collection
on Space Robotics

Work supported by grant EP/R026092 (FAIR-SPACE) through
UKRI and EPSRC Hubs for “Robotics and AI Hubs in Extreme
and Hazardous Environments”.

� Rafael C. Cardoso
rafael.cardoso@manchester.ac.uk

1 Department of Computer Science, The University
of Manchester, Manchester, UK

2 Department of Computer Science, Maynooth
University, Maynooth, Ireland

3 School of Computer Science and Mathematics, Liverpool
John Moores University, Liverpool, UK

power of the hardware that has been deployed in the past.
Recently, the cost of launching new hardware to space
has been decreasing, allowing more powerful hardware
to be deployed. The addition of autonomy to a system
can increase non-deterministic behavior, which can lead to
unforeseen failures that can cause the loss of the deployed
hardware. Moreover, stakeholders often find full autonomy
undesirable in many domains due to the lack of trustwor-
thiness in such systems [1]. Therefore, such systems are
required to be properly verified and validated before their
deployment [2].

As we move from directly controlled robotics towards
more autonomous versions, the additional issue of ‘auton-
omy’ comes in to play. An autonomous system can (and, in
the case of space, often must) make its own decisions and
take its own actions without direct, real-time human control.
It will clearly be important to verify that the decisions (and
actions) taken will be the correct ones in a given scenario.
However, unless the environment within which the system
has to operate is especially simple, then we will not be
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able to enumerate all possible decisions and fix the ‘correct’
answers beforehand. In space, this will likely be impractical,
and so it must be recognized that an autonomous system will
have to make a decision that we have not pre-scripted. We
consider a space autonomous system as a vehicle/machine
deployed in orbit (such as an unmanned spacecraft) or
located on a planet (such as a planetary rover) that is capable
of operating safely with little or no human input.

A recent literature review on space robotics presents
the history of past missions and discusses the challenges
that are to be expected for future missions [3]. In their
review, the authors highlight Verification and Validation
(V&V) as one of the technological challenges for space
robotics, emphasizing the need for providing assurances
and guarantees towards reliable missions. Their review does
not provide any details about techniques or approaches for
V&V of space robotics.

Verification and Validation (V&V)

Verification is the process of establishing whether the sys-
tem built conforms to the requirements and specifications of
the system. Formal verification comprises a class of tech-
niques that use formal, usually logic-based, techniques to
provide strong evidence (usually in the form of a mathemati-
cal proof) that the system behaves correctly. There are many
other, less formal, varieties of verification with the most
popular being testing. Validation is the process of assessing
whether the system produced actually matches the intended
use or application. Here, formal techniques are less common
with testing being prevalent.

A recent survey [4] provides an overview of formal
verification approaches for autonomous robotic systems.
The authors discuss the challenges, formalisms, and state-
of-the-art formal approaches for the specification and
verification of autonomous robotics. The results found
in this survey indicate that model checking is the most
prominent formal method used in the literature for the
verification of autonomous robotic systems. It provides a
comprehensive collection of research, but it is not focused
on any particular application domain.

We note that, often verification methods are specifically
focused on proving safety properties such as “the rover
shall not collide with an obstacle”. However, with the
advancement of technology in the space domain, it is
becoming apparent that security-related properties are also
crucial. Recent work in this vein seeks to integrate security
properties into the formal verification effort by proposing a
detailed security-minded verification methodology [5].

In this paper, we provide a systematic review of tech-
niques and approaches for the V&V of space autonomous
systems, as well as techniques and approaches that are

considered to have potential value to the aforementioned
domain. Some papers were identified via our work in the
FAIR-SPACE Hub1 and our interaction with the space
research community. The majority of the papers were
found by analyzing recent publications at relevant con-
ferences/workshops including the NASA Formal Meth-
ods symposium (NFM), workshop on Formal Methods
for Autonomous Systems (FMAS), etc. Additionally, some
papers were discovered through a search limited to the past
5 years on indexing websites including Google Scholar.

Most of the research reported in this paper is directly
applied to space autonomous systems. Some of the research
relates to applications in the aeronautical domain which we
included here for the following reasons:

– The aeronautical domain is strongly researched at
NASA;

– There are a lot of works published at NFM that are
focused on aeronautics but highlight their potential use
in space;

– The recent launch of the Mars Perseverance Rover
(landed on the 18th of February, 2021) included the
Mars Ingenuity Helicopter.

We start with the available formal methods and discuss
how these have been applied to verify autonomous systems
in space applications. Then, a brief account of the current
attempts to verify machine learning techniques is given,
followed by some recent approaches to validation and
simulation-based testing. To conclude, we discuss the
complex challenge of providing compositional verification
in modular autonomous systems.

Model Checking

In model checking [6, 7] we are given a formal model M for
a system and a property ψ , and we wish to check whether
M satisfies ψ . For example, M might be a model for the
subsystem of a car automatically assisting acceleration and
ψ might be that there is never unintended acceleration as
has been the case in the past resulting in a number of
fatalities [8]. The property is often given in a temporal
logic [9, Chap. 11] such as Linear-time Temporal Logic
(LTL) or a variant of Computation Tree Logic (CTL).

Broadly speaking, methods for verification can be
divided into two categories: proof-based methods and
state-exploration methods. Proof-based methods involve
representing a given model M as a temporal formula and
then attempting to prove that a given property ψ is a
logical consequence of that formula [10]. State-exploration
methods involve performing an exhaustive search of all

1https://www.fairspacehub.org/
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possible behaviors of a given model M with the goal
of finding a counter-example, i.e., a behavior that does
not satisfy the property ψ that we wish to check. This
can be done with a model checker such as SPIN [11]
or NuSMV [12, 13]. State-exploration methods are also
available in a probabilistic setting, in which case one uses
probabilistic temporal logics [14] and most prominently the
PRISM model checker [15].

Some examples of verification using state-exploration
methods are [16, 17]. In [16], an autonomous agent
developed using an agent programming language is used
for simulated satellite control. In this scenario, the agent
must ensure that the satellite can acquire and maintain a
low Earth orbit. This approach is later expanded in [18]
to a more complex scenario of four spacecraft controlled
by autonomous agents with the goal of exploring asteroids.
Verification in such scenarios was done through a program
model checker [19], a variation of model checking that
exhaustively runs over the actual code instead of a model or
abstraction of the system.

In [17], the authors present a Brahms model of an
astronaut–rover teamwork scenario in which the astronaut
and the rover work together to improve and maintain a
newly established outpost on another planet. Brahms [20]
is a framework for modeling human–robot teamwork. The
authors describe how the model’s functionality can be
validated using the Brahms IDE software, and how the
model can be formally verified by translating it into the
PROMELA formalism. The resulting PROMELA model is
then used as input to the SPIN model checker in order to
verify several safety- and mission-critical properties related
to the teamwork between the astronaut and the rover.

The work in [21••] proposes a model-based approach to
the specification of the requirements of the system in order
to avoid ambiguity that is commonly found when using
natural language. This initial model of the requirements
is consistently incremented, deriving formal properties,
identifying properties that can be enforced by design,
instantiating the architecture, and trying to enforce the
verification of the remaining properties by applying the
architecture to the design model. If some property could
not be enforced in the model built with the requirements
then model checking is applied, and if the property is
still not satisfied then the model has to be refined or the
requirements revised. Experiments were performed with a
CubETH nanosatellite [22] and low Earth orbit observation
satellite show that this incrementally-built model can reduce
the number of testing required in later stages of the design.

Some examples of probabilistic verification are [23–
25]. In [23], a realistic use case of routing in a Walker
satellite constellation (i.e., in circular orbits and with the
same period and inclination) in low Earth orbit is verified
using probabilistic model checking. The approach consists

of using distributed schedulers that can only make use of
local data. The routing strategies that were obtained are
shown to have a high probability for message delivery.

In [24], the authors provide a framework for the decom-
position of a system into a hierarchy of functionalities. The
framework enables the assignment of probabilities to ele-
mentary functionalities. The probabilities of complex func-
tionalities are then obtained from the probabilities of their
(simpler) constituent parts and certain temporal connectives
that the authors introduce. The authors present an appli-
cation of this framework to a (hypothetical) deorbitation
scenario for the (retired) satellite ENVISAT [26].

In [25], probabilistic model checking is used to
accommodate inherent non-determinism in NASA’s Small
Aircraft Transportation System (SATS) [27]. SATS is
a system created to increase safety and throughput in
commercial airports. The authors introduce a synchron-
ous discrete-time Markov chain model for SATS, whose
intended properties they verify using the PRISM model
checker [15].

In [28], the NuSMV model checker is used to verify
the attitude and orbit control system for embedded satellite
software. A key focus is on the abstractions used to alleviate
the state explosion problem.

The COMPASS (COrrectness, Modeling and Perfor-
mance of AeroSpace Systems) 3.0 tool for ensuring cor-
rectness of system-level properties in the aerospace domain
is described in [29]. The tool was evaluated in several
case studies involving a satellite’s design and modelling
a CubETH nanosatellite [22] which highlighted that mod-
els in COMPASS can cover discrete, real-time, hybrid, and
probabilistic aspects of the system. An industrial-sized case
study relating to a satellite platform that uses an earlier ver-
sion of the COMPASS tool is discussed in [30]. A single
model is used to which different types of verification are
applied (including model checking).

Theorem Proving

Verification using theorem proving involves representing
a system in higher-order logic/type theory [31] and then
attempting to (manually) prove that the system obeys certain
properties of interest, commonly using a proof assistant
such as Isabelle/HOL [32] or Coq [33]. Some examples of
proof-based verification applications follow below.

In [34], the authors propose a correction for an unwanted
behavior that can potentially present when two unmanned
aircraft systems (UAS) fly in close proximity. The authors
formalize and prove the correctness of their proposal in the
Prototype Verification System (PVS) [35].

In [36], the authors discuss interactive theorem proving
with higher-order logic and its application in examples from
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NASA’s unmanned aircraft systems. The motivation behind
their work is that existing formalisms are not expressive
enough to be used to specify complex requirements that
can usually be found in cyber-physical systems. The main
benefit of this approach is the parametric nature of the
models, since they are generic they can be instantiated and
reused. The authors acknowledge that the main drawback
of formalisms such as higher-order logic is that it they are
undecidable.

In [37], the authors present a formalization (and their
methodology for that formalization) in the Isabelle/HOL
proof assistant [32] of a security-relevant part of PikeOS.
(PikeOS is a commercial, real-time operating system used
for safety and security critical systems in the automotive and
aerospace industries, e.g. [38, 39] describe its use in space
avionics.)

In [40], the authors report on their use of the Dafny
formal method for the verification of a grasping algorithm
which is to be used for Active Debris Removal (ADR) in
space. The authors work from high-level natural language
requirements and an existing Python implementation
to derive a Dafny model and its associated formal
specifications.

Runtime Verification

At runtime, unexpected events can happen that can cause
the violation of the safety and reliability properties of the
system. Runtime Verification (RV) [41] consists of attaching
monitors to a system in order to observe events at runtime
and match the occurrence of these events to a specified
formal property. The monitor then outputs whether the
property is consistent or inconsistent with the observed
events. If an inconsistency is detected, an appropriate (and
separate) mechanism for failure handling can be triggered.
The properties to be verified in RV are usually specified
in formal logic such as LTL [42] or in more user-friendly
Domain Specific Languages (DSL) [43].

The main advantages of RV [41] are: (a) it is a formal
method, therefore some formal assurances can be provided
depending on the proofs of the tool being used; (b) monitors
can scale well with the complexity of the system, especially
when compared to other formal methods; (c) it is able to
cope with dynamic environments. The main disadvantage of
RV is that it is not exhaustive, since it is observing events at
runtime it can not explore the entire search space such as in
traditional model checking techniques.

In [44], the authors use RV to complement the static
(and exhaustive) verification that was performed offline
by a model checker. They have shown that by using

these two formal techniques simultaneously it is possible
to provide stronger assurances about the execution of a
system in a dynamic environment. The approach consists
of first modeling the environment, which usually results
in an incomplete model that is an abstraction of the real
environment, and then using this abstraction to validate the
model at runtime using RV.

Another complement to the use of RV is proposed in [45]
where, instead of model checking, the authors use simula-
tion, specifically discrete-event stochastic simulation. Their
work aims to use verification artifacts from simulation to
augment RV and artifacts from RV to improve simulation.
We discuss the combination of different V&V techniques
further and in more detail in a later section.

The verification of properties at runtime of a radio
onboard a spacecraft has been reported in [46]. In this
scenario, the radio can communicate over different channels
in order to send telemetry data to the ground unit. An
example of a property, which was based on realistic log files
from the Mars Curiosity rover [47], is that once a command
is dispatched, it will not be dispatched again before that
command is completed. The main RV approach used in
this experiment was an extension of LTL to improve its
expressiveness by including rules, extra propositions that
prefix the execution and are expressed as past time temporal
formulae. The authors have shown that their extension is as
expressive as Büchi automata, which makes it an interesting
alternative for RV of past temporal properties.

A similar scenario can be found in [48], once again
focusing on the RV of properties related to the communi-
cation between the Mars Curiosity rover, a spacecraft, and
the ground station. In this case, the technique used was
based on the monitoring and verification of timed properties
(i.e., with time constraints) through the extension of binary
decision diagrams (data structure for representing Boolean
functions) for RV. Results show that as the size of the
trace increases, the time required to verify timed properties
increases much faster than when compared to verification of
formulae without any time constraints. Even though there is
such an increase in time, the verification still finished in a
few minutes for traces of length up to one million events.

Robonaut2 [49], shown in Fig. 1, is a humanoid robot
running ROS (Robot Operating System) [50] onboard the
International Space Station (ISS) to aid humans in complex
tasks. Even though the robot was formally verified, when
deployed to such a complex environment as the ISS a fault
emerged where the sensors in the rotational joints of the
robot were indistinguishable from high-torque data. This
resulted in the control system freezing due to safety reasons
and awaiting instruction from ground-control at Houston.
To solve this problem, the work done in [51•] suggests
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Fig. 1 The Robonaut2 robot (Source: NASA)

that the use of RV to disambiguate faults in Robonaut2.
The challenge was finding a suitable tool that could be
embedded in the robot, since the hardware had severe
resource constraints. The authors presented new encodings
for Mission-time LTL in order to cope with the resource
limitation, and then implemented monitors using the new
encodings in a Robonaut2 hardware on loan from NASA.
The monitors were successfully able to disambiguate real-
time faults in the system, even under limited resources.

ROSMonitoring [52] is an RV tool for ROS. The main
difference between ROSMonitoring and past ROS-based
approaches is that it does not change anything in the
core of ROS, thus, it can easily be used across many
different versions of ROS. It achieves this portability by
instrumenting the nodes to be monitored so that they will
publish their messages to a different topic, which will then
be subscribed by the monitor. The monitor uses an external
oracle (standard ones are provided but new oracles can
be plugged in to support different formalisms) to verify
the property based on the messages that are received. If
the property is satisfied then the message is propagated to
the original subscriber nodes, otherwise the monitor may
choose to withhold the message. The tool is validated in a
ROS simulation of the Mars Curiosity rover [53•] to verify
that velocity commands being sent to the wheels of the
rover would never surpass a safety threshold. Scalability
experiments have also shown that minimal to no overhead
is added by the presence of the monitors, as long as the
frequency of messages being monitored does not exceed
5000 messages per second.

Software Testing

Software testing is an integral part of V&V of a system [54].
While formal verification can provide strong guarantees
about the behavior of the system, there are many things
that can still go wrong, such as properties that do not fully
capture the requirements of the system, formal models that
abstract away from the implementation too much and are
no longer accurate representations, systems that are too
complex to formally verify and consequently encounter
state-space explosion problems, among others. Software
testing can take many forms, such as incremental testing,
simulation-based testing, physical testing, etc. Although
software testing is not as exhaustive as formal verification
techniques, it scales well and if correctly targeted it can be
used to successfully test high-priority functionalities of the
system against the most critical requirements.

The Curiosity rover [47], shown in Fig. 2, originally
landed in Mars on August 6th, 2012. It is a complex
rover with six wheels, a chassis with a suspension
system, hardware that is radiation-hardened, many scientific
instruments such as sample analysis and radiation detection,
and 17 cameras. The high complexity of the system
meant that it had to be verified and tested extensively
and rigorously [55]. The Curiosity was verified using an
incremental test program, starting from the verification of
individual functions and building up to the validation of
system capabilities in mission-like scenarios. The paper
focuses on describing the latter, that is, system scenario
tests. Due to the limited window of time for testing, the
tests cases targeted high and medium priority objectives.
An example of a test case used was the functionality of
the rover in the first solar day of its execution. Tests
included performing imaging, checking instrument liveness,
the first ultra-high-frequency communication, and the first
shutdown and restart of the system.

The AEGIS system [56] provides an autonomous target
selection and data acquisition to augment the chemistry
and camera instruments that are positioned in the mast of

Fig. 2 The Mars Curiosity rover (Source: NASA JPL)
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the Curiosity rover. It was uplinked and installed in the
Curiosity rover in October 2015. The rover is capable of
firing a powerful laser that is able to convert solid rocks into
plasma, and therefore, the autonomous targeting system had
to be properly validated to ensure that it would not affect
the safety of the rover (e.g., inaccurate aiming). The system
was tested thoroughly under simulation, and once deployed
it was validated onboard the Curiosity before releasing it to
be used by the science team.

Expressing the requirements of the system in a formal
way is one of the first fundamental steps in V&V. One of
the major challenges in using formal verification in real
world applications is that formal notations often used to
describe the system’s requirements are not very intuitive.
In [57], the authors use a tool (FRET) for the generation
of formal requirements from a structured natural language
(FRETISH). The approach was built using features from
NASA’s research and applications. The main goal of the
language is to allow developers to intuitively express the
requirements of the system in the early design stages.
The tool currently supports the automatic generation of
past-time, finite- and infinite-trace, and future-time metric
temporal logic formulae. These formulae can then be
formally verified for correctness. In particular, FRET
requirements can be translated to CoCoSim contracts
and then these properties can be model-checked using
Kind2 [58].

Verification and Validation of Machine
Learning

Machine learning (ML) [59] is one of the areas in artificial
intelligence that has seen an exponential increase in
research in recent years. Its main application in autonomous
systems is in the use of ML for image classification [60],
as evidenced by research made across several inter-
disciplinary areas such as dentistry [61], climate [62], and
education [63].

Despite the increase in the popularity of ML, its use in
safety-critical scenarios remains limited due to the lack of
formal guarantees about how ML approaches behave when
using very large data sets for training. The literature review
in [64] presents the state-of-the-art in V&V of ML applied
to safety-critical systems and enumerates a set of challenges
for providing assurances towards the use of ML in the
automotive domain. The review concludes that the most
pressing challenges for V&V of ML are state-explosion
(combined with limited transparency and traceability) and
unpredictable environments. Promising research directions
are employing safety cages (monitoring of sensor input) and
performing as much simulation-based testing as possible.

The survey in [65] discusses recent efforts in the
verification and testing of techniques in ML. According to
the survey, existing formal verification techniques for ML
have been shown to work only in small-scale systems or
by using approximation methods which provide an answer
within a certain threshold. While mathematical approaches
can, in some cases, be applied, a safety argument framework
is required to address the partial knowledge and issues
around the use of neural networks [66]. Clearly, the role
for variations of testing is strong in machine learning, and
a review of current and future activity in this area is given
in [67].

In [68], the authors introduce their neural simplex
architecture with the goal of providing safety guarantees
for neural ML controllers. This novel architecture uses
an adaptation module to retrain, at runtime, the controller
in case of failure. Their technique is demonstrated in the
scenario of rover navigation, where a rover has to move to a
predetermined location while avoiding static obstacles. The
retrained controller is shown to be safer than the controller
that was generated with the initial training. Usually when
an advanced controller (e.g., ML trained) fails, control
is reverted to a baseline controller in order to recover
from failure. The main advantage of the neural simplex
architecture is that in case of failure the advance controller
(ML trained) will be able to regain control after retraining is
completed and the resulting controller should be safer than
the previous one.

Two approaches [69, 70] attempted to verify deep neural
networks in the ACAS Xu (Airborne Collision Avoidance
System for unmanned aircraft) domain [71]. In the first [69],
the DeepSafe technique is introduced to automatically infer
safe regions of the input space where the network is robust
against adversarial perturbations. In the second [70], the
Marabou tool based on satisfiability modulo theories (SMT)
that converts queries about a neural network’s properties
into constraint satisfaction problems. These deep neural
network verification approaches can only verify simple
properties about the input/output but not about how the
network actually works.

Verification of Autonomous Behavior

In this section, we refer to autonomous behavior as symbolic
autonomy, as opposed to sub-symbolic approaches such
as machine learning from the previous section. Verifying
systems with a bounded set of possible behaviors can be
carried out through standard processes such as model-
checking or testing. Once we get beyond this point we
may have to verify the decision-making process to ensure
that it will always ‘try’ to make the best decision [72]. As
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highlighted in [4], there are relatively few viable verification
approaches that consider the issue of increased autonomy.

Consequently, there are a wide range of international
efforts aiming to address this. The IEEE Technical Com-
mittee on the Verification of Autonomous Systems brings
together experts in this area, while IEEE standards such as
Failsafe Design of Autonomous Systems2 (standard P7009)
are tackling the issue of increasingly autonomous systems.
Academically, routes towards the reliable incorporation
of autonomous components are beginning to appear [73]
and mechanisms for specifying what we require of an
autonomous system have appeared [74]. It is also important
to note that there are different levels of autonomy, such as
semi-autonomous or fully autonomous, and that autonomy
can be implemented with either symbolic (e.g., cognitive
agents) or sub-symbolic AI (e.g., neural networks) tech-
niques. As we have shown in this paper, currently there are
more examples of V&V in autonomous symbolic AI.

Compositional Verification

Although model checking can be applied successfully in
the verification of many real-world systems, there are
systems whose sheer size prohibits many of the techniques
mentioned so far. Likewise, the complexity found in these
systems makes it difficult to generate efficient test cases
that can cover the whole system. Such systems often follow
a modular design, that is, the system is decomposed into a
number of individual components that encapsulate specific
functionalities (e.g., sensors, actuators, etc.). V&V of such
systems is usually done through the composition of the
V&V of each component [75–78]. Thus, the properties of
the original system can be obtained from the properties of
its components and their composition. The difficulty in this
approach lies in choosing the appropriate V&V technique
for each individual component such that one has high
confidence that the chosen technique correctly represents
their assumed properties; and that from the properties of
the components one can obtain useful properties for the
whole system. Some examples of compositional verification
follow below.

In [79], the authors present a modular framework
for the verification of NASA’s Quad-redundant Flight
Control System (QFCS), a control system for NASA’s
Transport Class Model (TCM) aircraft. The framework
enables the specification of components, together with
assume/guarantee contracts for each component. Thus, the
system of interest (QFCS) can be abstractly represented as
the (synchronous) composition of various such components.
This representation enables the authors to efficiently check

2https://www.ieee-ras.org/verification-of-autonomous-systems/

whether the system satisfies certain requirements and detect
possible errors.

Contract-based approaches [80] are an efficient way of
performing compositional verification in modular systems.
A contract for an individual component describes the
assumptions (i.e., pre-conditions) that the component has
and the guarantees (i.e., post-conditions) that it provides.
These contracts can then be used to verify global properties
of the system through compositional reasoning techniques.
In [80], the CoCoSpec tool is introduced for specifying such
contracts that can then be verified using mode-aware model
checking. The effectiveness of their tool is demonstrated
through its application to a flight-critical system case study.
Monolithic analysis of the entire system was reported as
not possible. Instead, a comparison between monolithic
and compositional verification of the autopilot component
determined that the monolithic approach was inconclusive
after executing for 1 h; meanwhile the compositional
finished in 80 s.

Recently, [81] analyzed a portion of the literature and
identified common patterns appearing in robotic missions
(e.g., patrolling, obstacle avoidance). They generated a
catalogue with 22 mission specification patterns that are
specified in structured English grammar and then translated
into LTL or CTL formulae. These formulae are then
verified for correctness using a model checker and used as
input for a planner to generate plans that can satisfy the
mission specification. While their approach is not capable
of verifying global properties and does not provide any
way of combining the verification of multiple patterns,
these patterns do offer a practical way of specifying the
requirements of modular systems.

The verification of a simulation of the Mars Curiosity
rover is presented in [53•]. The simulation runs in Gazebo, a
robot simulator with dynamics simulation and 3D graphics,
using ROS. A rational agent autonomously performs high-
level decision-making in the rover. Different components
in the system have been verified with an appropriate V&V
technique: the agent component is implemented using an
agent programming language and verified with a program
model checker; the communication between the ROS nodes
containing low-level control of the wheels, mast, and arm
of the Curiosity were specified in the Communicating
Sequential Processes (CSP) process algebra and then
verified using model checking; the environment interface
between the agent and the ROS nodes has been verified with
the Dafny program verifier, which uses automatic theorem
proving to verify properties; finally, the properties verified
in these different techniques were translated into runtime
monitors and verified at runtime. This work presents a
heterogeneous approach to verification but the integration
of the results from each of the distinct techniques is left as
future work which is explored in [78].
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Table 1 V&V techniques grouped by type

Technique References

Model checking [16–18, 21••, 23–25, 28, 53•,
72, 78, 80, 81]

Theorem proving [34, 36, 37, 40, 53•, 78]

Runtime verification [44–46, 48, 51•, 53•, 68]

Software testing [55–57, 81]

Other [69, 70, 79]

Conclusions

This review paper presented recent advancements found
in the literature towards verification and validation of
autonomous systems with an emphasis in space applica-
tions. The literature contains a wide variety of different
approaches and techniques that range from formal methods
(model checking, theorem proving, runtime verification)
to non-formal methods (simulation-based testing, physical
testing). Table 1 includes the validation and verification
techniques and approaches grouped by their type. Some
entries belong to multiple groups due to their use of more
than one V&V technique. As mentioned previously, the
majority of the research is on model checking. Note that
this table is limited to peer-reviewed research, and as such
the low number of references in software testing are not an
indication that it is not used or useful in the V&V of space
autonomous systems but simply indicates the latest trends
in state-of-the-art research.

The research on individual techniques for V&V has
been progressing over the years and has been applied
successfully to monolithic systems. However, complex
space autonomous systems are often modular, comprised
of multiple components that are specified at different
abstraction levels. While some research has been done
in compositional verification in order to try to bring
together verification techniques and results from individual
components into guarantees about the whole system, this
remains an open and complex problem. Furthermore, an
iterative V&V process using a corroborative approach [82]
could further improve the reliability and trustworthiness in
the system.
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