229 research outputs found

    Flow characteristics and exchange in complex biological systems as observed by pulsed-field-gradient magnetic-resonance imaging

    Get PDF
    Water flow through model porous media was studied in the presence of surface relaxation, internal magnetic field inhomogeneities and exchange with stagnant water pools with different relaxation behavior, demonstrating how the apparent flow parameters average velocity, volume flow and flow conducting area in these situations depend on the observation time. To investigate the water exchange process a two component biological model system consisting of water flowing through a biofilm reactor (column packed with methanogenic granular sludge beads) was used, before and after a heat treatment to introduce exchange. We show that correction of the stagnant fluid signal amplitude for relaxation at increasing observation time using the observed relaxation times reveals exchange between the two fractions in the system. Further it is demonstrated how this exchange can be quantifie

    Computer-Assisted Anatomical Placement of a Double-Bundle ACL through 3D-Fitting of a Statistically Generated Femoral Template into Individual Knee Geometry

    Full text link
    Femoral graft placement is an important factor in the success of ACL-reconstruction. Besides improving the accuracy of femoral tunnel placement, Computer Assisted Surgery (CAS) can be used to determine the anatomical Location. This requires a 3D femoral template with the position of the anatomical ACL-center, based on endoscopical measurable landmarks. This study describes the development and application of this method. The template is generated through statistical shape analysis of the ACL-insertion, with respect to the anteromedial- (AMB) and posterolateral bundle (PLB). The data is mapped onto a cylinder and related to the intercondylar notch surface and the cartilage border on the lateral notch wall (n=33). The template was programmed in a computer-assisted system for ACL-replacement and validated. The program allows real-time tracking of the femur and interactive digitization under endoscopic control. In a wizard-like fashion the surgeon is guided through steps of acquiring the landmarks for the template alignment. The AMB-and PLB-center are accurate positioned within 1-3 mm of the anatomic insertion-centers in individual knee

    Irregular meal pattern-effects on energy expenditure, metabolism and appetite regulation: a randomized controlled trial in healthy normal-weight women

    Get PDF
    Background: Obesity is increasing in parallel with greater all-day food availability. The latter may promote meal irregularity, dysregulation of the energy balance, and poor metabolic health. Objective: We investigated the effect of meal irregularity on the thermic effect of food (TEF), lipid concentrations, carbohydrate metabolism, subjective appetite, and gut hormones in healthy women. Design: Eleven normal-weight women (18–40 y of age) were recruited in a randomized crossover trial with two 14-d isoenergetic diet periods (identical foods provided and free living) that were separated by a 14-d habitual diet washout period. In period 1, participants followed a regular meal pattern (6 meals/d) or an irregular meal pattern (3–9 meals/d), and in period 2, the alternative meal pattern was followed. Before and after each period, when participants were fasting and for 3 h after intake of a test drink, measurements were taken of energy expenditure, circulating glucose, lipids (fasting only), insulin, glucagon-like peptide 1 (GLP-1), peptide YY (PYY), and ghrelin. An ad libitum test meal was offered. Subjective appetite ratings were assessed while fasting, after the test drink, after the ad libitum meal, and during the intervention. Continuous interstitial glucose monitoring was undertaken for 3 consecutive days during each intervention, and the ambulatory activity pattern was recorded (ambulatory energy expenditure estimation). Results: Regularity was associated with a greater TEF (P , 0.05) and a lower incremental area under the curve (iAUC) for glucose after intake of the test drink (over 3 h) and, for some identical meals, during the 2 interventions (over 90 min) (day 7: after breakfast; day 9: after lunch and dinner). There was no difference between treatments for the test-drink gut hormone response. A time effect was noted for fasting GLP-1, fasting PYY, PYY responses, and hunger-rating responses to the test drink (P ˂ 0.05). Lower hunger and higher fullness ratings were seen premeal and postmeal during the regular period while subjects were free living. Conclusion: Meal regularity appears to be associated with greater TEF and lower glucose responses, which may favor weight management and metabolic health. This trial was registered at clinical trials.gov as NCT02052076

    Changes in energy expenditure associated with ingestion of high protein, high fat versus high protein, low fat meals among underweight, normal weight, and overweight females

    Get PDF
    Background: Metabolic rate is known to rise above basal levels after eating, especially following protein consumption. Yet, this postprandial rise in metabolism appears to vary among individuals. This study examined changes in energy expenditure in response to ingestion of a high protein, high fat (HPHF) meal versus an isocaloric high protein, low fat (HPLF) meal in underweight, normal weight, or overweight females (n = 21) aged 19–28 years. Methods: Energy expenditure, measured using indirect calorimetry, was assessed before and every 30 minutes for 3.5 hours following consumption of the meals on two separate occasions. Height and weight were measured using standard techniques. Body composition was measured using bioelectrical impedance analysis. Results: Significant positive correlations were found between body mass index (BMI) and baseline metabolic rate (MR) (r = 0.539; p = 0.017), between body weight and baseline MR (r = 0.567; p = 0.011), between BMI and average total change in MR (r = 0.591; p = 0.008), and between body weight and average total change in MR (r = 0.464; p = 0.045). Metabolic rate (kcal/min) was significantly higher in the overweight group than the normal weight group, which was significantly higher than the underweight group across all times and treatments. However, when metabolic rate was expressed per kg fat free mass (ffm), no significant difference was found in postprandial energy expenditure between the overweight and normal groups. Changes in MR (kcal/min and kcal/min/kg ffm) from the baseline rate did not significantly differ in the underweight (n = 3) or in the overweight subjects (n = 5) following consumption of either meal at any time. Changes in MR (kcal/min and kcal/min/kg ffm) from baseline were significantly higher in normal weight subjects (n = 11) across all times following consumption of the HPHF meal versus the HPLF meal. Conclusion: There is no diet-induced thermogenic advantage between the HPHF and HPLF meals in overweight and underweight subjects. In contrast, in normal weight subjects, ingestion of a HPHF meal significantly increases MR (69.3 kcal/3.5 hr) versus consumption of a HPLF meal and provides a short-term metabolic advantage

    Effects of an amylopectin and chromium complex on the anabolic response to a suboptimal dose of whey protein

    Get PDF
    Background Previous research has demonstrated the permissive effect of insulin on muscle protein kinetics, and the enhanced insulin sensitizing effect of chromium. In the presence of adequate whole protein and/or essential amino acids (EAA), insulin has a stimulatory effect on muscle protein synthesis, whereas in conditions of lower blood EAA concentrations, insulin has an inhibitory effect on protein breakdown. In this study, we determined the effect of an amylopectin/chromium (ACr) complex on changes in plasma concentrations of EAA, insulin, glucose, and the fractional rate of muscle protein synthesis (FSR). Methods Using a double-blind, cross-over design, ten subjects (six men, four women) consumed 6 g whey protein + 2 g of the amylopectin-chromium complex (WPACr) or 6 g whey protein (WP) after an overnight fast. FSR was measured using a primed, continuous infusion of ring-d5-phenylalanine with serial muscle biopsies performed at 2, 4, and 8 h. Plasma EAA and insulin were assayed by ion-exchange chromatography and ELISA, respectively. After the biopsy at 4 h, subjects ingested their respective supplement, completed eight sets of bilateral isotonic leg extensions at 80% of their estimated 1-RM, and a final biopsy was obtained 4 h later. Results Both trials increased EAA similarly, with peak levels noted 30 min after ingestion. Insulin tended (p = 0.09) to be higher in the WPACr trial. Paired samples t-tests using baseline and 4-h post-ingestion FSR data separately for each group revealed significant increases in the WPACr group (+0.0197%/h, p = 0.0004) and no difference in the WP group (+0.01215%/hr, p = 0.23). Independent t-tests confirmed significant (p = 0.045) differences in post-treatment FSR between trials. Conclusions These data indicate that the addition of ACr to a 6 g dose of whey protein (WPACr) increases the FSR response beyond what is seen with a suboptimal dose of whey protein alone

    Effects of Meal Frequency on Metabolic Profiles and Substrate Partitioning in Lean Healthy Males

    Get PDF
    The daily number of meals has an effect on postprandial glucose and insulin responses, which may affect substrate partitioning and thus weight control. This study investigated the effects of meal frequency on 24 h profiles of metabolic markers and substrate partitioning.Twelve (BMI:21.6 ± 0.6 kg/m(2)) healthy male subjects stayed after 3 days of food intake and physical activity standardization 2 × 36 hours in a respiration chamber to measure substrate partitioning. All subjects randomly received two isoenergetic diets with a Low meal Frequency (3 ×; LFr) or a High meal Frequency (14 ×; HFr) consisting of 15 En% protein, 30 En% fat, and 55 En% carbohydrates. Blood was sampled at fixed time points during the day to measure metabolic markers and satiety hormones.Glucose and insulin profiles showed greater fluctuations, but a lower AUC of glucose in the LFr diet compared with the HFr diet. No differences between the frequency diets were observed on fat and carbohydrate oxidation. Though, protein oxidation and RMR (in this case SMR + DIT) were significantly increased in the LFr diet compared with the HFr diet. The LFr diet increased satiety and reduced hunger ratings compared with the HFr diet during the day.The higher rise and subsequently fall of insulin in the LFr diet did not lead to a higher fat oxidation as hypothesized. The LFr diet decreased glucose levels throughout the day (AUC) indicating glycemic improvements. RMR and appetite control increased in the LFr diet, which can be relevant for body weight control on the long term.ClinicalTrials.gov NCT01034293

    A Novel Docetaxel-Loaded Poly (ε-Caprolactone)/Pluronic F68 Nanoparticle Overcoming Multidrug Resistance for Breast Cancer Treatment

    Get PDF
    Multidrug resistance (MDR) in tumor cells is a significant obstacle to the success of chemotherapy in many cancers. The purpose of this research is to test the possibility of docetaxel-loaded poly (ε-caprolactone)/Pluronic F68 (PCL/Pluronic F68) nanoparticles to overcome MDR in docetaxel-resistance human breast cancer cell line. Docetaxel-loaded nanoparticles were prepared by modified solvent displacement method using commercial PCL and self-synthesized PCL/Pluronic F68, respectively. PCL/Pluronic F68 nanoparticles were found to be of spherical shape with a rough and porous surface. The nanoparticles had an average size of around 200 nm with a narrow size distribution. The in vitro drug release profile of both nanoparticle formulations showed a biphasic release pattern. There was an increased level of uptake of PCL/Pluronic F68 nanoparticles in docetaxel-resistance human breast cancer cell line, MCF-7 TAX30, when compared with PCL nanoparticles. The cytotoxicity of PCL nanoparticles was higher than commercial Taxotere®in the MCF-7 TAX30 cell culture, but the differences were not significant (p > 0.05). However, the PCL/Pluronic F68 nanoparticles achieved significantly higher level of cytotoxicity than both of PCL nanoparticles and Taxotere®(p < 0.05), indicating docetaxel-loaded PCL/Pluronic F68 nanoparticles could overcome multidrug resistance in human breast cancer cells and therefore have considerable potential for treatment of breast cancer

    Doxorubicin loaded Polymeric Nanoparticulate Delivery System to overcome drug resistance in osteosarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug resistance is a primary hindrance for the efficiency of chemotherapy against osteosarcoma. Although chemotherapy has improved the prognosis of osteosarcoma patients dramatically after introduction of neo-adjuvant therapy in the early 1980's, the outcome has since reached plateau at approximately 70% for 5 year survival. The remaining 30% of the patients eventually develop resistance to multiple types of chemotherapy. In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure incurred from multidrug resistant (MDR) tumor cells, we explored the possibility of loading doxorubicin onto biocompatible, lipid-modified dextran-based polymeric nanoparticles and evaluated the efficacy.</p> <p>Methods</p> <p>Doxorubicin was loaded onto a lipid-modified dextran based polymeric nano-system. The effect of various concentrations of doxorubicin alone or nanoparticle loaded doxorubicin on KHOS, KHOS<sub>R2</sub>, U-2OS, and U-2OS<sub>R2 </sub>cells was analyzed. Effects on drug retention, immunofluorescence, Pgp expression, and induction of apoptosis were also analyzed.</p> <p>Results</p> <p>Dextran nanoparticles loaded with doxorubicin had a curative effect on multidrug resistant osteosarcoma cell lines by increasing the amount of drug accumulation in the nucleus via Pgp independent pathway. Nanoparticles loaded with doxorubicin also showed increased apoptosis in osteosarcoma cells as compared with doxorubicin alone.</p> <p>Conclusion</p> <p>Lipid-modified dextran nanoparticles loaded with doxorubicin showed pronounced anti-proliferative effects against osteosarcoma cell lines. These findings may lead to new treatment options for MDR osteosarcoma.</p

    THE IMPACT OF DIETARY PROTEIN OR AMINO ACID SUPPLEMENTATION ON MUSCLE MASS AND STRENGTH IN ELDERLY PEOPLE: INDIVIDUAL PARTICIPANT DATA AND META-ANALYSIS OF RCT’S

    Get PDF
    Objectives Increasing protein or amino acid intake has been promoted as a promising strategy to increase muscle mass and strength in elderly people, however, long-term intervention studies show inconsistent findings. Therefore, we aim to determine the impact of protein or amino acid supplementation compared to placebo on muscle mass and strength in older adults by combining the results from published trials in a metaanalysis and pooled individual participant data analysis. Design We searched Medline and Cochrane databases and performed a meta-analysis on eight available trials on the effect of protein or amino acid supplementation on muscle mass and strength in older adults. Furthermore, we pooled individual data of six of these randomized double-blind placebo-controlled trials. The main outcomes were change in lean body mass and change in muscle strength for both the meta-analysis and the pooled analysis. Results The meta-analysis of eight studies (n=557) showed no significant positive effects of protein or amino acid supplementation on lean body mass (mean difference: 0.014 kg: 95% CI -0.152; 0.18), leg press strength (mean difference: 2.26 kg: 95% CI -0.56; 5.08), leg extension strength (mean difference: 0.75 kg: 95% CI: -1.96, 3.47) or handgrip strength (mean difference: -0.002 kg: 95% CI -0.182; 0.179). Likewise, the pooled analysis showed no significant difference between protein and placebo treatment on lean body mass (n=412: p=0.78), leg press strength (n=121: p=0.50), leg extension strength (n=121: p=0.16) and handgrip strength (n=318: p=0.37). Conclusions There is currently no evidence to suggest that protein or amino acid supplementation without concomitant nutritional or exercise interventions increases muscle mass or strength in predominantly healthy elderly people
    corecore