3,067 research outputs found

    Time transients in the quantum corrected Newtonian potential induced by a massless nonminimally coupled scalar field

    Full text link
    We calculate the one loop graviton vacuum polarization induced by a massless, nonminimally coupled scalar field on Minkowski background. We make use of the Schwinger-Keldysh formalism, which allows us to study time dependent phenomena. As an application we compute the leading quantum correction to the Newtonian potential of a point particle. The novel aspect of the calculation is the use of the Schwinger-Keldysh formalism, within which we calculate the time transients induced by switching on of the graviton-scalar coupling.Comment: 22 pages, 5 figures; detailed calculation of the graviton vacuum polarization moved to the new Appendix; matches published versio

    Intrinsic difference in erythrocyte membrane in spontaneously hypertensive rats characterized by Na + and K + fluxes

    Full text link
    The goad of this study was to determine whether the elevated flux of sodium and potassium through the erythrocyte membrane of spontaneously hypertensive rats (SHR) is due to an intrinsic difference in the cell membrane or to a humoral factor present in the plasma. Isolated and washed erythrocytes from SHR and normotensive Wistar Kyoto (WKy) and Sprague-Dawley (SD) rats, were incubated in 1) a physiological salt solution, 2) WKy or SD plasma and 3) SHR plasma. Incubations were performed at 4°C for 23 h. Erythrocytes from SHR incubated in physiological salt solution had significantly greater Na + and K + fluxes than those from normotensive WKy and SD rats ( P WKy>SHR. Erythrocyte K + efflux was not altered by plasma. We conclude that the elevated flux of Na + and K + in SHR erythrocytes is due to an intrinsic difference in the cell membrane. The greater Na + influx in plasma from any strain of rats is not correlated with the blood pressure of the rat. The lesser increase in Na + influx in crythrocytes incubated in plasma from SHR masks the greater intrinsic membrane permeability in the SHR erythrocyte when Na + fluxes are studied in whole blood. The elevated flux of Na + and K + through the erythrocyte membrane of SHR may reflect a general membrane defect that underlies the pathogenesis of elevated arterial pressure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47450/1/424_2004_Article_BF00652525.pd

    Towards a new classification of early-type galaxies: an integral-field view

    Get PDF
    In this proceeding we make use of the two-dimensional stellar kinematics of a representative sample of E and S0 galaxies obtained with the SAURON integral-field spectrograph to reveal that early-type galaxies appear in two broad flavours, depending on whether they exhibit clear large-scale rotation or not. We measure the level of rotation via a new parameter LambdaR and use it as a basis for a new kinematic classification that separates early-type galaxies into slow and fast rotators. With the aid of broad-band imaging we will reinforce this finding by comparing our kinematic results to the photometric properties of these two classes.Comment: 4 pages, 2 figures, to appear in "Pathways Through an Eclectic Universe", J. H. Knappen, T. J. Mahoney, and A. Vazedekis (Eds.), ASP Conf. Ser., 200

    Revisiting the Stellar Velocity Ellipsoid - Hubble type relation: observations versus simulations

    Get PDF
    The stellar velocity ellipsoid (SVE) in galaxies can provide important information on the processes that participate in the dynamical heating of their disc components (e.g. giant molecular clouds, mergers, spiral density waves, bars). Earlier findings suggested a strong relation between the shape of the disc SVE and Hubble type, with later-type galaxies displaying more anisotropic ellipsoids and early-types being more isotropic. In this paper, we revisit the strength of this relation using an exhaustive compilation of observational results from the literature on this issue. We find no clear correlation between the shape of the disc SVE and morphological type, and show that galaxies with the same Hubble type display a wide range of vertical-to-radial velocity dispersion ratios. The points are distributed around a mean value and scatter of σz/σR=0.7±0.2\sigma_z/\sigma_R=0.7\pm 0.2. With the aid of numerical simulations, we argue that different mechanisms might influence the shape of the SVE in the same manner and that the same process (e.g. mergers) does not have the same impact in all the galaxies. The complexity of the observational picture is confirmed by these simulations, which suggest that the vertical-to-radial axis ratio of the SVE is not a good indicator of the main source of disc heating. Our analysis of those simulations also indicates that the observed shape of the disc SVE may be affected by several processes simultaneously and that the signatures of some of them (e.g. mergers) fade over time

    A study of rotating globular clusters - the case of the old, metal-poor globular cluster NGC 4372

    Full text link
    Aims: We present the first in-depth study of the kinematic properties and derive the structural parameters of NGC 4372 based on the fit of a Plummer profile and a rotating, physical model. We explore the link between internal rotation to different cluster properties and together with similar studies of more GCs, we put these in the context of globular cluster formation and evolution. Methods: We present radial velocities for 131 cluster member stars measured from high-resolution FLAMES/GIRAFFE observations. Their membership to the GC is additionally confirmed from precise metallicity estimates. Using this kinematic data set we build a velocity dispersion profile and a systemic rotation curve. Additionally, we obtain an elliptical number density profile of NGC 4372 based on optical images using a MCMC fitting algorithm. From this we derive the cluster's half-light radius and ellipticity as r_h=3.4'+/-0.04' and e=0.08+/-0.01. Finally, we give a physical interpretation of the observed morphological and kinematic properties of this GC by fitting an axisymmetric, differentially rotating, dynamical model. Results: Our results show that NGC 4372 has an unusually high ratio of rotation amplitude to velocity dispersion (1.2 vs. 4.5 km/s) for its metallicity. This, however, puts it in line with two other exceptional, very metal-poor GCs - M 15 and NGC 4590. We also find a mild flattening of NGC 4372 in the direction of its rotation. Given its old age, this suggests that the flattening is indeed caused by the systemic rotation rather than tidal interactions with the Galaxy. Additionally, we estimate the dynamical mass of the GC M_dyn=2.0+/-0.5 x 10^5 M_Sun based on the dynamical model, which constrains the mass-to-light ratio of NGC 4372 between 1.4 and 2.3 M_Sun/L_Sun, representative of an old, purely stellar population.Comment: Accepted for publication in A&A, 12 pages, 14 figures, 2 table

    Central star formation and metallicity in CALIFA interacting galaxies

    Full text link
    We use optical integral-field spectroscopic (IFS) data from 103 nearby galaxies at different stages of the merging event, from close pairs to merger remnants provided by the CALIFA survey, to study the impact of the interaction in the specific star formation and oxygen abundance on different galactic scales. To disentangle the effect of the interaction and merger from internal processes, we compared our results with a control sample of 80 non-interacting galaxies. We confirm the moderate enhancement (2-3 times) of specific star formation for interacting galaxies in central regions as reported by previous studies; however, the specific star formation is comparable when observed in extended regions. We find that control and interacting star-forming galaxies have similar oxygen abundances in their central regions, when normalized to their stellar masses. Oxygen abundances of these interacting galaxies seem to decrease compared to the control objects at the large aperture sizes measured in effective radius. Although the enhancement in central star formation and lower metallicities for interacting galaxies have been attributed to tidally induced inflows, our results suggest that other processes such as stellar feedback can contribute to the metal enrichment in interacting galaxies.Comment: 9 pages, 9 figures. Accepted for publication in Astronomy & Astrophysic

    First survey of Wolf-Rayet star populations over the full extension of nearby galaxies observed with CALIFA

    Get PDF
    The search of extragalactic regions with conspicuous presence of Wolf-Rayet (WR) stars outside the Local Group is challenging task due to the difficulties in detecting their faint spectral features. In this exploratory work, we develop a methodology to perform an automated search of WR signatures through a pixel-by-pixel analysis of integral field spectroscopy (IFS) data belonging to the Calar Alto Legacy Integral Field Area survey, CALIFA. This technique allowed us to build the first catalogue of Wolf-Rayet rich regions with spatially-resolved information, allowing to study the properties of these complexes in a 2D context. The detection technique is based on the identification of the blue WR bump (around He II 4686 {\AA}, mainly associated to nitrogen-rich WR stars, WN) and the red WR bump (around C IV 5808 {\AA} and associated to carbon-rich WR stars, WC) using a pixel-by-pixel analysis. We identified 44 WR-rich regions with blue bumps distributed in 25 galaxies of a total of 558. The red WR bump was identified only in 5 of those regions. We found that the majority of the galaxies hosting WR populations in our sample are involved in some kind of interaction process. Half of the host galaxies share some properties with gamma-ray burst (GRB) hosts where WR stars, as potential candidates to being the progenitors of GRBs, are found. We also compared the WR properties derived from the CALIFA data with stellar population synthesis models, and confirm that simple star models are generally not able to reproduce the observations. We conclude that other effects, such as the binary star channel (which could extend the WR phase up to 10 Myr), fast rotation or other physical processes that causes the loss of observed Lyman continuum photons, are very likely affecting the derived WR properties, and hence should be considered when modelling the evolution of massive stars.Comment: 33 pages, accepted for publication in A&

    Dark Matter Fraction in Disk-Like Galaxies Over the Past 10 Gyr

    Full text link
    We present an observational study of the dark matter fraction in star-forming disk-like galaxies up to redshift z2.5z \sim 2.5, selected from publicly available integral field spectroscropic surveys, namely KMOS3D}, KGES, and KROSS. We provide novel observational evidence, showing that at a fixed redshift, the dark matter fraction gradually increases with radius, indicating that the outskirts of galaxies are dark matter dominated, similarly to local star-forming disk galaxies. This observed dark matter fraction exhibits a decreasing trend with increasing redshift. However, on average, the fraction within the effective radius (upto outskirts) remains above 50\%, similar to locals. Furthermore, we investigated the relationships between the dark matter, baryon surface density, and circular velocity of galaxies. We observe a decreasing trend in the dark matter fraction as baryon surface densities increase, which is consistent across all stellar masses, redshift ranges, and radii, with a scatter of 0.13 dex. On the other hand, the correlation between the circular velocity at the outermost radius and the dark matter fraction within this radius has a relatively low scatter (0.11 dex), but its slope varies with stellar mass and with redshift, providing observational evidence of the dynamical evolution of the interplay between the baryonic and dark matter distributions with cosmic time. We observe that low stellar mass galaxies (log(M/M)10.0\log(M_{\star}/\mathrm{M_\odot}) \leq 10.0) undergo a higher degree of evolution, which may be attributed to the hierarchical merging of galaxies.Comment: Comments are welcom
    corecore