30 research outputs found

    Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment

    Get PDF
    NEXT-DEMO is a large scale prototype and demonstrator of the NEXT-100 High Pressure Xenon Gas TPC, which will search for the neutrinoless double beta decay of Xe-136 using 100-150 kg of enriched xenon gas. The apparatus was built to prove the expected performance of NEXT-100, namely, energy resolution better than 1% FWHM at 2.5 MeV and event topological reconstruction. In this paper we describe the operation and initial results of the detector. A resolution of 1.7% FWHM at 511 keV (0.77% FWHM at 2.5 MeV) is obtained in the full fiducial volume of the detector. A topological analysis shows that electrons are identified by the characteristic blob energy deposit associated to the Bragg peak in 98.5% of the cases, with a rate of misidentification (two blobs) of 0.14%

    Ionization and scintillation response of high-pressure xenon gas to alpha particles

    Get PDF
    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas

    An improved measurement of electron-ion recombination in high-pressure xenon gas

    Full text link
    We report on results obtained with the NEXT-DEMO prototype of the NEXT-100 high-pressure xenon gas time projection chamber (TPC), exposed to an alpha decay calibration source. Compared to our previous measurements with alpha particles, an upgraded detector and improved analysis techniques have been used. We measure event-by-event correlated fluctuations between ionization and scintillation due to electron-ion recombination in the gas, with correlation coeffcients between -0.80 and -0.56 depending on the drift field conditions. By combining the two signals, we obtain a 2.8% FWHM energy resolution for 5.49 MeV alpha particles and a measurement of the optical gain of the electroluminescent TPC. The improved energy resolution also allows us to measure the specific activity of the radon in the gas due to natural impurities. Finally, we measure the average ratio of excited to ionized atoms produced in the xenon gas by alpha particles to be 0:561 0:045, translating into an average energy to produce a primary scintillation photon ofWex = (39:2 3:2) eV.This work was supported by the following agencies and institutions: the European Research Council under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP), FPA2009-13697-C04 and FIS2012-37947-C04; the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231; and the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS/103860/2008.Serra, L.; Sorel, M.; Alvarez, V.; Borges, FIG.; Camargo, M.; Carcel, S.; Cebrian, S.... (2015). An improved measurement of electron-ion recombination in high-pressure xenon gas. Journal of Instrumentation. 10:1-19. https://doi.org/10.1088/1748-0221/10/03/P03025S1191

    Near-intrinsic energy resolution for 30-662 keV gamma rays in a high pressure xenon electroluminescent TPC

    Get PDF
    We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley National Laboratory. It is a prototype of the planned NEXT-100 136Xe neutrino-less double beta decay (0νββ) experiment with the main objectives of demonstrating near-intrinsic energy resolution at energies up to 662 keV and of optimizing the NEXT-100 detector design and operating parameters. Energy resolutions of ∼1% FWHM for 662 keV gamma rays were obtained at 10 and 15 atm and ∼5% FWHM for 30 keV fluorescence xenon X-rays. These results demonstrate that 0.5% FWHM resolutions for the 2,459 keV hypothetical neutrino-less double beta decay peak are realizable. This energy resolution is a factor 7 to 20 better than that of the current leading 0νββ experiments using liquid xenon and thus represents a significant advancement. We present also first results from a track imaging system consisting of 64 silicon photo-multipliers recently installed in NEXT-DBDM that, along with the excellent energy resolution, demonstrates the key functionalities required for the NEXT-100 0νββ search

    Ionization and scintillation of nuclear recoils in gaseous xenon

    Get PDF
    Abstract Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.This work was supported by the following agencies and institutions: the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, and the National Energy Research Scientific Computing Center (NERSC), supported by the Office of Science of the U.S. Department of Energy, both under Contract no. DE-AC02-05CH11231; the European Research Council under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under Grants CONSOLIDER-Ingenio 2010 C5D2008-0037 (CUP), FPA2009-13697-004-04, FPA2009-13697-C04-01, FIS2012-37947-C04-01, FIS2012-37947-C04-02, FIS2012-37947-C04-03, and FIS2012-37947-C04-04; and the Portuguese FCT and FEDER through the program COMPETE, Projects PTDC/FIS/103860/2008 and PTDC/FIS/112272/2009. J. Renner acknowledges the support of a Department of Energy National Nuclear Security Administration Stewardship Science Graduate Fellowship, grant number DE-FC52-08NA28752.Renner, J.; Gehman, VM.; Goldschmidt, A.; Matis, HS.; Miller, T.; Nakajima, Y.; Nygren, D.... (2015). Ionization and scintillation of nuclear recoils in gaseous xenon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 793:62-74. https://doi.org/10.1016/j.nima.2015.04.057S627479

    Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives

    Get PDF
    [EN] We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology.DGD is supported by the Ramon y Cajal program (Spain) under contract number RYC-2015-18820. The authors want to acknowledge the RD51 collaboration for encouragement and support during the elaboration of this work, and in particular discussions with F. Resnati, A. Milov, V. Peskov, M. Suzuki and A. F. Borghesani. The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04 and the Severo Ochoa Program SEV-2014-0398; the GVA of Spain under grant PROM-ETEO/2016/120; the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS-NUC/2525/2014 and UID/FIS/04559/2013; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory) and DE-FG02-13ER42020 (Texas A& and the University of Texas at Arlington.Azevedo, C.; Gonzalez-Diaz, D.; Biagi, SF.; Oliveira, CAB.; Henriques, CAO.; Escada, J.; Monrabal, F.... (2018). Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment. 877:157-172. https://doi.org/10.1016/j.nima.2017.08.049S15717287
    corecore