14 research outputs found

    A systematic review on integration mechanisms in human and animal health surveillance systems with a view to addressing global health security threats

    Get PDF
    Lymphatic filariasis and onchocerciasis are neglected tropical diseases (NTDs) targeted for elimination by mass (antifilarial) drug administration. These drugs are predominantly active against the microfilarial progeny of adult worms. New drugs or combinations are needed to improve patient therapy and to enhance the effectiveness of interventions in persistent hotspots of transmission. Several therapies and regimens are currently in (pre-)clinical testing. Clinical trial simulators (CTSs) project patient outcomes to inform the design of clinical trials but have not been widely applied to NTDs, where their resource-saving payoffs could be highly beneficial. We demonstrate the utility of CTSs using our individual-based onchocerciasis transmission model (EPIONCHO-IBM) that projects trial outcomes of a hypothetical macrofilaricidal drug. We identify key design decisions that influence the power of clinical trials, including participant eligibility criteria and post-treatment follow-up times for measuring infection indicators. We discuss how CTSs help to inform target product profiles

    The experience of West Nile virus integrated surveillance system in the Emilia-Romagna region: five years of implementation, Italy, 2009 to 2013

    No full text
    Predicting West Nile virus (WNV) circulation and the risk of WNV epidemics is difficult due to complex interactions of multiple factors involved. Surveillance systems that timely detect virus activity in targeted areas, and allow evidence-based risk assessments may therefore be necessary. Since 2009, a system integrating environmental (mosquitoes and birds) and human surveillance has been implemented and progressively improved in the Emilia-Romagna region, Italy. The objective is to increase knowledge of WNV circulation and to reduce the probability of virus transmission via blood, tissue and organ donation. As of 2013, the system has shown highly satisfactory results in terms of early detection capacity (the environmental surveillance component allowed detection of WNV circulation 3\u20134 weeks before human cases of West Nile neuroinvasive disease (WNND) occurred), sensitivity (capacity to detect virus circulation even at the enzootic level) and area specificity (capacity to indicate the spatial distribution of the risk for WNND). Strong correlations were observed between the vector index values and the number of human WNND cases registered at the province level. Taking into consideration two scenarios of surveillance, the first with environmental surveillance and the second without, the total costs for the period from 2009 to 2013 were reduced when environmental surveillance was considered (EUR 2.093 million for the first scenario vs EUR 2.560 million for the second). Environmental surveillance helped to reduce costs by enabling a more targeted blood unit testing strategy. The inclusion of environmental surveillance also increased the efficiency of detecting infected blood units and further allowed evidence-based adoption of preventative public health measures
    corecore