182 research outputs found

    Unusual behaviour of the ferroelectric polarization in PbTiO3_{3}/SrTiO3_{3} superlattices

    Get PDF
    Artificial PbTiO3_{3}/SrTiO3_{3} superlattices were constructed using off-axis RF magnetron sputtering. X-ray diffraction and piezoelectric atomic force microscopy were used to study the evolution of the ferroelectric polarization as the ratio of PbTiO3_{3} to SrTiO3_{3} was changed. For PbTiO3_{3} layer thicknesses larger than the 3-unit cells SrTiO3_{3} thickness used in the structure, the polarization is found to be reduced as the PbTiO3_{3} thickness is decreased. This observation confirms the primary role of the depolarization field in the polarization reduction in thin films. For the samples with ratios of PbTiO3_{3} to SrTiO3_{3} of less than one a surprising recovery of ferroelectricity that cannot be explained by electrostatic considerations was observed

    Nonlinear optics of III-V semiconductors in the terahertz regime: an ab-initio study

    Full text link
    We compute from first principles the infrared dispersion of the nonlinear susceptibility χ(2)\chi^{(2)} in zincblende semiconductors. At terahertz frequencies the nonlinear susceptibility depends not only on the purely electronic response χ∞(2)\chi^{(2)}_{\infty}, but also on three other parameters C1C_1, C2C_2 and C3C_3 describing the contributions from ionic motion. They relate to the TO Raman polarizability, the second-order displacement-induced dielectric polarization, and the third-order lattice potential. Contrary to previous theory, we find that mechanical anharmonicity (C3C_3) dominates over electrical anharmonicity (C2C_2), which is consistent with recent experiments on GaAs. We predict that the sharp minimum in the intensity of second-harmonic generation recently observed for GaAs between ωTO/2\omega_{\rm TO}/2 and ωTO\omega_{\rm TO} does not occur for several other III-V compounds.Comment: 9 pages, 3 figures; updated bibliograph

    First-principles study of the electrooptic effect in ferroelectric oxides

    Full text link
    We present a method to compute the electrooptic tensor from first principles, explicitly taking into account the electronic, ionic and piezoelectric contributions. It allows us to study the non-linear optic behavior of three ferroelectric ABO_3 compounds : LiNbO_3, BaTiO_3 and PbTiO_3. Our calculations reveal the dominant contribution of the soft mode to the electrooptic coefficients in LiNbO_3 and BaTiO_3 and identify the coupling between the electric field and the polar atomic displacements along the B-O chains as the origin of the large electrooptic response in these compounds.Comment: accepted for publication in Phys. Rev. Let

    Theoretical determination of the Raman spectra of MgSiO3 perovskite and post-perovskite at high pressure

    Full text link
    We use the density functional perturbation theory to determine for the first time the pressure evolution of the Raman intensities for a mineral, the two high-pressure structures of MgSiO3 perovskite and post-perovskite. At high pressures, the Raman powder spectra reveals three main peaks for the perovskite structure and one main peak for the post-perovskite structure. Due to the large differences in the spectra of the two phases Raman spectroscopy can be used as a good experimental indication of the phase transition.Comment: 16 pages, submitted to Geophysical Research Letter

    The Raman spectrum of grossular garnet: a quantum mechanical simulation of wavenumbers and intensities

    Get PDF
    Raman spectroscopy is a standard and powerful investigation technique for minerals, and garnet is one of the most observed and visible minerals, undoubtfully important both as a witness of our planet’s evolution and as a main component in many high-tech applications. This paper presents the Raman spectrum of grossular, the calcium–aluminium end-member of garnets (Ca3Al2Si3O12), as computed by using an ab initio quantum-mechanical approach, an all-electron Gaussian-type basis set and the hybrid B3LYP functional. The wavenumbers of the 25 Raman active modes are in excellent agreement with the available experimental measurements, with the mean absolute difference being between 5 and 8 cm1. The apparent disagreement between a few experimental vs calculated data can be easily justified through the analysis of the corresponding calculated peak intensities, which is very low in all of these cases. The intensities of the Raman active modes of grossular were calculated here for the first time, thanks to a recent implementation by some of the present authors that allow for accurate predictions of the Raman spectra of minerals. To the authors’ knowledge, there are no tabulated data sets for Raman intensities of grossular, although qualitative information can be extracted from the published spectra. This study can then be considered as an accurate reference data set for grossular, other than a clear evidence that quantum-mechanical simulation is an actual tool to predict spectroscopic properties of minerals

    Electron localization : band-by-band decomposition, and application to oxides

    Full text link
    Using a plane wave pseudopotential approach to density functional theory we investigate the electron localization length in various oxides. For this purpose, we first set up a theory of the band-by-band decomposition of this quantity, more complex than the decomposition of the spontaneous polarization (a related concept), because of the interband coupling. We show its interpretation in terms of Wannier functions and clarify the effect of the pseudopotential approximation. We treat the case of different oxides: BaO, α\alpha-PbO, BaTiO3_3 and PbTiO3_3. We also investigate the variation of the localization tensor during the ferroelectric phase transitions of BaTiO3_3 as well as its relationship with the Born effective charges

    Sox9 Inhibits Cochlear Hair Cell Fate by Upregulating Hey1 and HeyL Antagonists of Atoh1.

    Full text link
    peer reviewedIt is widely accepted that cell fate determination in the cochlea is tightly controlled by different transcription factors (TFs) that remain to be fully defined. Here, we show that Sox9, initially expressed in the entire sensory epithelium of the cochlea, progressively disappears from differentiating hair cells (HCs) and is finally restricted to supporting cells (SCs). By performing ex vivo electroporation of E13.5-E14.5 cochleae, we demonstrate that maintenance of Sox9 expression in the progenitors committed to HC fate blocks their differentiation, even if co-expressed with Atoh1, a transcription factor necessary and sufficient to form HC. Sox9 inhibits Atoh1 transcriptional activity by upregulating Hey1 and HeyL antagonists, and genetic ablation of these genes induces extra HCs along the cochlea. Although Sox9 suppression from sensory progenitors ex vivo leads to a modest increase in the number of HCs, it is not sufficient in vivo to induce supernumerary HC production in an inducible Sox9 knockout model. Taken together, these data show that Sox9 is downregulated from nascent HCs to allow the unfolding of their differentiation program. This may be critical for future strategies to promote fully mature HC formation in regeneration approaches

    CRYSTAL14: A program for the ab initio investigation of crystalline solids

    Get PDF
    The capabilities of the CRYSTAL14 program are presented, and the improvements made with respect to the previous CRYSTAL09 version discussed. CRYSTAL14 is an ab initio code that uses a Gaussian-type basis set: both pseudopotential and all-electron strategies are permitted; the latter is not much more expensive than the former up to the first-second transition metal rows of the periodic table. A variety of density functionals is available, including as an extreme case Hartree–Fock; hybrids of various nature (global, range-separated, double) can be used. In particular, a very efficient implementation of global hybrids, such as popular B3LYP and PBE0 prescriptions, allows for such calculations to be performed at relatively low computational cost. The program can treat on the same grounds zero-dimensional (molecules), one-dimensional (polymers), two-dimensional (slabs), as well as three-dimensional (3D; crystals) systems. No spurious 3D periodicity is required for low-dimensional systems as happens when plane-waves are used as a basis set. Symmetry is fully exploited at all steps of the calculation; this permits, for example, to investigate nanotubes of increasing radius at a nearly constant cost (better than linear scaling!) or to perform self-consistent-field (SCF) calculations on fullerenes as large as (10,10), with 6000 atoms, 84,000 atomic orbitals, and 20 SCF cycles, on a single core in one day. Three versions of the code exist, serial, parallel, and massive-parallel. In the second one, the most relevant matrices are duplicated, whereas in the third one the matrices in reciprocal space are distributed for diagonalization. All the relevant vectors are now dynamically allocated and deallocated after use, making CRYSTAL14 much more agile than the previous version, in which they were statically allocated.The program now fits more easily in low-memory machines (as many supercomputers nowadays are). CRYSTAL14 can be used on parallel machines up to a high number of cores (benchmarks up to 10,240 cores are documented) with good scalability, the main limitation remaining the diagonalization step. Many tensorial properties can be evaluated in a fully automated way by using a single input keyword: elastic, piezoelectric, photoelastic, dielectric, as well as first and second hyperpolarizabilies, electric field gradients, Born tensors and so forth. Many tools permit a complete analysis of the vibrational properties of crystalline compounds. The infrared and Raman intensities are now computed analytically and related spectra can be generated. Isotopic shifts are easily evaluated, frequencies of only a fragment of a large system computed and nuclear contribution to the dielectric tensor determined. New algorithms have been devised for the investigation of solid solutions and disordered systems. The topological analysis of the electron charge density, according to the Quantum Theory of Atoms in Molecules, is now incorporated in the code via the integrated merge of the TOPOND package. Electron correlation can be evaluated at the Möller–Plesset second-order level (namely MP2) and a set of double-hybrids are presently available via the integrated merge with the CRYSCOR program
    • …
    corecore