8 research outputs found

    Toward ultrafast magnetic depth profiling using time resolved x ray resonant magnetic reflectivity

    Get PDF
    During the last two decades, a variety of models have been developed to explain the ultrafast quenching of magnetization following femtosecond optical excitation. These models can be classified into two broad categories, relying either on a local or a non local transfer of angular momentum. The acquisition of the magnetic depth profiles with femtosecond resolution, using time resolved x ray resonant magnetic reflectivity, can distinguish local and non local effects. Here, we demonstrate the feasibility of this technique in a pump probe geometry using a custom built reflectometer at the FLASH2 free electron laser FEL . Although FLASH2 is limited to the production of photons with a fundamental wavelength of 4 amp; 8201;nm amp; 8771;310 amp; 8201;eV , we were able to probe close to the Fe L3 edge 706.8 amp; 8201;eV of a magnetic thin film employing the third harmonic of the FEL. Our approach allows us to extract structural and magnetic asymmetry signals revealing two dynamics on different time scales which underpin a non homogeneous loss of magnetization and a significant dilation of 2 amp; 8201; of the layer thickness followed by oscillations. Future analysis of the data will pave the way to a full quantitative description of the transient magnetic depth profile combining femtosecond with nanometer resolution, which will provide further insight into the microscopic mechanisms underlying ultrafast demagnetizatio

    Developments in mainstreaming sex equality in Europe

    No full text

    Seismogenic Fault Reactivation in Western Central Africa: Insights From Regional Stress Analysis

    No full text
    Abstract The onshore continental margins of western Central Africa have been hosting potentially damaging earthquake events for decades; yet, the links between the seismicity, the contemporary stress field, and pre‐existing faults are not well understood. Here, we analyze the regional stress fields offshore and onshore along the coastal margin, and in the interior continental areas using earthquake focal mechanisms, map and characterize the detailed structure of preexisting fault systems in outcrops, and assess their reactivation potential. Our results show a switch from NNE‐SSW transpressive stress regime offshore and near the coastal margins, to NE‐SW compressive and transtensive stress regimes in the cratonic interior (Congo Basin and Kasai Block). We show that regional stresses acting on offshore oceanic fracture zones are compatible with those acting along the onshore areas of the continental margin. Field observations reveal the presence of large fault systems that deform both the Precambrian basement and Phanerozoic sedimentary sequences, with widespread calcite veining, quartz veining, and palygorskite mineralization (with evidence of post‐veining shear reactivation) along the fault zones. Along the margin, the preexisting NNE‐, NNW‐, and N‐S ‐trending strike‐slip faults and normal faults show a high slip tendency (>80%–100%), whereas in the continental interior, the NW‐ and N‐S ‐trending thrust faults are the most likely to reactivate. We argue that favorable orientation of the preexisting faults define the susceptibility of the faults to seismic reactivation. We propose that zones of higher stress magnitudes along distal offshore oceanic fracture zones extend further into the continent and may be driving stress loading on pre‐stressed, favorably oriented fault systems onshore, along the continental margin

    Beitrag zur �tiologie der Lichtdermatosen

    No full text
    corecore