122 research outputs found

    Power Balancing Control for Grid Energy Storage System in Photovoltaic Applications — Real Time Digital Simulation Implementation

    Get PDF
    Abstract: A grid energy storage system for photo voltaic (PV) applications contains three different power sources i.e., PV array, battery storage system and the grid. It is advisable to isolate these three different sources to ensure the equipment safety. The configuration proposed in this paper provides complete isolation between the three sources. A Power Balancing Control (PBC) method for this configuration is proposed to operate the system in three different modes of operation. Control of a dual active bridge (DAB)-based battery charger which provides a galvanic isolation between batteries and other sources is explained briefly. Various modes of operation of a grid energy storage system are also presented in this paper. Hardware-In-the-Loop (HIL) simulation is carried out to check the performance of the system and the PBC algorithm. A power circuit (comprised of the inverter, dual active bridge based battery charger, grid, PV cell, batteries, contactors, and switches) is simulated and the controller hardware and user interface panel are connected as HIL with the simulated power circuit through Real Time Digital Simulator (RTDS). HIL simulation results are presented to explain the control operation, steady-state performance in different modes of operation and the dynamic response of the system

    A Hybrid PV-Battery System for ON-Grid and OFF-Grid Applications—Controller-In-Loop Simulation Validation

    Get PDF
    In remote locations such as villages, islands and hilly areas, there is a possibility of frequent power failures, voltage drops or power fluctuations due to grid-side faults. Grid-connected renewable energy systems or micro-grid systems are preferable for such remote locations to meet the local critical load requirements during grid-side failures. In renewable energy systems, solar photovoltaic (PV) power systems are accessible and hybrid PV-battery systems or energy storage systems (ESS) are more capable of providing uninterruptible power to the local critical loads during grid-side faults. This energy storage system also improves the system dynamics during power fluctuations. In present work, a PV-battery hybrid system with DC-side coupling is considered, and a power balancing control (PBC) is proposed to transfer the power to grid/load and the battery. In this system, a solar power conditioning system (PCS) acts as an interface across PV source, battery and the load/central grid. With the proposed PBC technique, the system can operate in following operational modes: (a) PCS can be able to work in grid-connected mode during regular operation; (b) PCS can be able to charge the batteries and (c) PCS can be able to operate in standalone mode during grid side faults and deliver power to the local loads. The proposed controls are explained, and the system response during transient and steady-state conditions is described. With the help of controller-in-loop simulation results, the proposed power balancing controls are validated, for both off-grid and on-grid conditions

    Big Data Analytics for Wireless and Wired Network Design: A Survey

    Get PDF
    Currently, the world is witnessing a mounting avalanche of data due to the increasing number of mobile network subscribers, Internet websites, and online services. This trend is continuing to develop in a quick and diverse manner in the form of big data. Big data analytics can process large amounts of raw data and extract useful, smaller-sized information, which can be used by different parties to make reliable decisions. In this paper, we conduct a survey on the role that big data analytics can play in the design of data communication networks. Integrating the latest advances that employ big data analytics with the networks’ control/traffic layers might be the best way to build robust data communication networks with refined performance and intelligent features. First, the survey starts with the introduction of the big data basic concepts, framework, and characteristics. Second, we illustrate the main network design cycle employing big data analytics. This cycle represents the umbrella concept that unifies the surveyed topics. Third, there is a detailed review of the current academic and industrial efforts toward network design using big data analytics. Forth, we identify the challenges confronting the utilization of big data analytics in network design. Finally, we highlight several future research directions. To the best of our knowledge, this is the first survey that addresses the use of big data analytics techniques for the design of a broad range of networks

    Accident Prediction Modeling for Indian Metro Cities

    Get PDF
    Road accidents are one of the biggest concerns to the road safety of developing nations. In India, around 150,000 fatal accidents occur annually. Road accident prediction models help in accessing the factors responsible for and those that contribute more to accidents. Most of the prediction models focus on the parameters like road characteristics, traffic characteristics, driver characteristics, and road geometrics. In this study, we considered socio-economic and land-use parameters as input data for accident prediction modeling. The socio-economic and land-use variables data of 20 Indian metro cities were collected. The data were collected for a period of 5 years ranging from 2016 to 2020. A multiple linear regression model was developed between the total number of accidents that happened in the 20 metro cities and the socio-economic and land-use variables. ANN model was also developed to check its applicability to this study and the results obtained are satisfactory

    Immobilization of a TiO<sub>2</sub>–PEDOT:PSS hybrid heterojunction photocatalyst for degradation of organic effluents

    No full text
    A plausible mechanism of photodegradation of methylene blue using a PVA/TiO2–PEDOT:PSS heterojunction catalyst film.</jats:p
    corecore