16 research outputs found

    Cancer associated talin point mutations disorganise cell adhesion and migration

    Get PDF
    Talin-1 is a key component of the multiprotein adhesion complexes which mediate cell migration, adhesion and integrin signalling and has been linked to cancer in several studies. We analysed talin-1 mutations reported in the Catalogue of Somatic Mutations in Cancer database and developed a bioinformatics pipeline to predict the severity of each mutation. These predictions were then assessed using biochemistry and cell biology experiments. With this approach we were able to identify several talin-1 mutations affecting integrin activity, actin recruitment and Deleted in Liver Cancer 1 localization. We explored potential changes in talin-1 signalling responses by assessing impact on migration, invasion and proliferation. Altogether, this study describes a pipeline approach of experiments for crude characterization of talin-1 mutants in order to evaluate their functional effects and potential pathogenicity. Our findings suggest that cancer related point mutations in talin-1 can affect cell behaviour and so may contribute to cancer progression

    Microfluidics-Based Force Spectroscopy Enables High-Throughput Force Experiments with Sub-Nanometer Resolution and Sub-Piconewton Sensitivity

    Get PDF
    Several techniques have been established to quantify the mechanicals of single molecules. However, most of them show only limited capabilities of parallelizing the measurement by performing many individual measurements simultaneously. Herein, a microfluidics-based single-molecule force spectroscopy method, which achieves sub-nanometer spatial resolution and sub-piconewton sensitivity and is capable of simultaneously quantifying hundreds of single-molecule targets in parallel, is presented. It relies on a combination of total internal reflection microscopy and microfluidics, in which monodisperse fluorescent beads are immobilized on the bottom of a microfluidic channel by macromolecular linkers. Application of a flow generates a well-defined shear force acting on the beads, whereas the nanomechanical linker response is quantified based on the force-induced displacement of individual beads. To handle the high amount of data generated, a cluster analysis which is capable of a semi-automatic identification of measurement artifacts and molecular populations is implemented. The method is validated by probing the mechanical response polyethylene glycol linkers and binding strength of biotin–NeutrAvidin complexes. Two energy barriers (at 3 and 5.7 Å, respectively) in the biotin–NeutrAvidin interaction are resolved and the unfolding behavior of talin's rod domain R3 in the force range between 1 to ≈10 pN is probed.publishedVersionPeer reviewe

    Syndecan-4 tunes cell mechanics by activating the kindlin-integrin-RhoA pathway

    Get PDF
    A mechanism of cell response to localized tension shows that syndecan-4 synergizes with EGFR to elicit a mechanosignalling cascade that leads to adaptive cell stiffening through PI3K/kindlin-2 mediated integrin activation. Extensive research over the past decades has identified integrins to be the primary transmembrane receptors that enable cells to respond to external mechanical cues. We reveal here a mechanism whereby syndecan-4 tunes cell mechanics in response to localized tension via a coordinated mechanochemical signalling response that involves activation of two other receptors: epidermal growth factor receptor and beta 1 integrin. Tension on syndecan-4 induces cell-wide activation of the kindlin-2/beta 1 integrin/RhoA axis in a PI3K-dependent manner. Furthermore, syndecan-4-mediated tension at the cell-extracellular matrix interface is required for yes-associated protein activation. Extracellular tension on syndecan-4 triggers a conformational change in the cytoplasmic domain, the variable region of which is indispensable for the mechanical adaptation to force, facilitating the assembly of a syndecan-4/alpha-actinin/F-actin molecular scaffold at the bead adhesion. This mechanotransduction pathway for syndecan-4 should have immediate implications for the broader field of mechanobiology.Peer reviewe

    Mechanical unfolding of proteins – comparative non-equilibrium molecular dynamics study

    Get PDF
    Mechanical signals regulate functions of mechanosensitive proteins by inducing structural changes that are determinant for force-dependent interactions. Talin is a focal adhesion protein that is known to extend under mechanical load, and it has been shown to unfold via intermediate states. Here, we compared different nonequilibrium molecular dynamics (MD) simulations to study unfolding of the talin rod. We combined boxed MD (BXD), steered MD, and umbrella sampling (US) techniques and provide free energy profiles for unfolding of talin rod subdomains. We conducted BXD, steered MD, and US simulations at different detail levels and demonstrate how these different techniques can be used to study protein unfolding under tension. Unfolding free energy profiles determined by BXD suggest that the intermediate states in talin rod subdomains are stabilized by force during unfolding, and US confirmed these results

    Mechanical unfolding reveals stable 3-helix intermediates in talin and α-catenin.

    No full text
    Mechanical stability is a key feature in the regulation of structural scaffolding proteins and their functions. Despite the abundance of α-helical structures among the human proteome and their undisputed importance in health and disease, the fundamental principles of their behavior under mechanical load are poorly understood. Talin and α-catenin are two key molecules in focal adhesions and adherens junctions, respectively. In this study, we used a combination of atomistic steered molecular dynamics (SMD) simulations, polyprotein engineering, and single-molecule atomic force microscopy (smAFM) to investigate unfolding of these proteins. SMD simulations revealed that talin rod α-helix bundles as well as α-catenin α-helix domains unfold through stable 3-helix intermediates. While the 5-helix bundles were found to be mechanically stable, a second stable conformation corresponding to the 3-helix state was revealed. Mechanically weaker 4-helix bundles easily unfolded into a stable 3-helix conformation. The results of smAFM experiments were in agreement with the findings of the computational simulations. The disulfide clamp mutants, designed to protect the stable state, support the 3-helix intermediate model in both experimental and computational setups. As a result, multiple discrete unfolding intermediate states in the talin and α-catenin unfolding pathway were discovered. Better understanding of the mechanical unfolding mechanism of α-helix proteins is a key step towards comprehensive models describing the mechanoregulation of proteins

    Biochemical and structural characterization of beta-carbonic anhydrase from the parasite Trichomonas vaginalis

    Get PDF
    Abstract: Trichomonas vaginalis is a unicellular parasite and responsible for one of the most common sexually transmittable infections worldwide, trichomoniasis. Carbonic anhydrases (CAs) are enzymes found in all lifeforms and are known to play a vital role in many biochemical processes in organisms including the maintenance of acid–base homeostasis. To date, eight evolutionarily divergent but functionally convergent forms of CAs (α, ÎČ, Îł, ÎŽ, ζ, η, Ξ, and Îč) have been discovered. The human genome contains only α-CAs, whereas many clinically significant pathogens express only ÎČ-CAs and/or Îł-CAs. The characterization of pathogenic ÎČ- and Îł-CAs provides important knowledge for targeting these biomolecules to develop novel anti-invectives against trichomoniasis. Here, we report the recombinant production and characterization of the second ÎČ-CA of T. vaginalis (TvaCA2). Light scattering analysis revealed that TvaCA2 is a dimeric protein, which was further supported with in silico modeling, suggesting similar structures between TvaCA2 and the first ÎČ-CA of T. vaginalis (TvaCA1). TvaCA2 exhibited moderate catalytic activity with the following kinetic parameters: kcat of 3.8 × 105 s−1 and kcat/KM of 4.4 × 107 M−1 s−1. Enzyme activity inhibition was studied with a set of clinically used sulfonamides and sulfonamide derivates. Twenty-seven out of the 39 compounds resulted in inhibition with a nanomolar range. These initial results encourage for future work entailing the design of more potent inhibitors against TvaCA2, which may provide new assets to fight trichomoniasis. Key messages: ‱ Protozoan parasite Trichomonas vaginalis has two ÎČ-carbonic anhydrases (TvaCA1/2). ‱ TvaCA1/TvaCA2 represents promising targets for antitrichomonal drug development. ‱ TvaCA2 is a dimer of 20.3 kDa and possesses moderate catalytic activity. ‱ The most efficient inhibitor was clinical drug acetazolamide with KI of 222.9 nM. ‱ The 39 tested sulfonamides form the basis for the design of more potent inhibitors.publishedVersionPeer reviewe

    Computational modeling and molecular dynamics simulations of mammalian cytoplasmic tyrosyl-tRNA synthetase and its complexes with substrates

    No full text
    <p>Cytoplasmic tyrosyl-tRNA synthetase (TyrRS) is one of the key enzymes of protein biosynthesis. TyrRSs of pathogenic organisms have gained attention as potential targets for drug development. Identifying structural differences between various TyrRSs will facilitate the development of specific inhibitors for the TyrRSs of pathogenic organisms. However, there is a deficiency in structural data for mammalian cytoplasmic TyrRS in complexes with substrates. In this work, we constructed spatial structure of full-length <i>Bos taurus</i> TyrRS (<i>Bt</i>TyrRS) and its complexes with substrates using the set of computational modeling techniques. Special attention was paid to <i>Bt</i>TyrRS complexes with substrates [L-tyrosine, K<sup>+</sup> and ATP:Mg<sup>2+</sup>] and intermediate products [tyrosyl-adenylate (Tyr-AMP), K<sup>+</sup> and PP<sub>i</sub>:Mg<sup>2+</sup>] with the different catalytic loop conformations. In order to analyze their dynamical properties, we performed 100 ns of molecular dynamics (MD) simulations. MD simulations revealed new structural data concerning the tyrosine activation reaction in mammalian TyrRS. Formation of strong interaction between Lys154 and <i>γ</i>-phosphate suggests the additional role of CP1 insertion as an important factor for ATP binding. The presence of a potassium-binding pocket within the active site of mammalian TyrRS compensates the absence of the second lysine in the KMSKS motif. Our data provide new details concerning a role of K<sup>+</sup> ions at different stages of the first step of the tyrosylation reaction, including the coordination of substrates and involvement in the PP<sub>i</sub> releasing. The results of this work suggest that differences between ATP-binding sites of mammalian and bacterial TyrRSs are meaningful and could be exploited in the drug design.</p

    Talin variant P229S compromises integrin activation and associates with multifaceted clinical symptoms

    Get PDF
    Adhesion of cells to the extracellular matrix (ECM) must be exquisitely coordinated to enable development and tissue homeostasis. Cell-ECM interactions are regulated by multiple signalling pathways that coordinate the activation state of the integrin family of ECM receptors. The protein talin is pivotal in this process and talin’s simultaneous interactions with the cytoplasmic tails of the integrins and the plasma membrane are essential to enable robust, dynamic control of integrin activation and cell-ECM adhesion. Here we report the identification of a de novo heterozygous c.685C>T (p.Pro229Ser) variant in the TLN1 gene from a patient with a complex phenotype. The mutation is located in the talin head region at the interface between the F2 and F3 domains. The characterisation of this novel p.P229S talin variant reveals the disruption of adhesion dynamics that result from disturbance of the F2-F3 domain interface in the talin head. Using biophysical, computational and cell biological techniques we find that the variant perturbs the synergy between the integrin-binding F3 and the membrane-binding F2 domains, compromising integrin activation, adhesion and cell migration. Whilst this remains a variant of uncertain significance, it is probable that the dysregulation of adhesion dynamics we observe in cells contributes to the multifaceted clinical symptoms of the patient and may provide insight into the multitude of cellular processes dependent on talin-mediated adhesion dynamics

    Schematic representation of talin rod unfolding through stable 3-helix intermediates.

    No full text
    <p>Without force, the talin rod subdomains remain intact and no VBSs are exposed. Under low load weak 4-helix bundles unfold to stable 3-helix intermediates. As the force increases, some of the 5-helix bundles unfold, forming the 3-helix intermediates along talin rod structure. Force-regulated unfolding of the talin rod changes affinity to different binding partners. RIAM and DLC1 are known to bind folded bundles, while recruitment of vinculin requires partial or complete unfolding of rod domains. VBSs that are located at terminal helices of the R2, R6, R7, and R10 bundles become available after unfolding to the 3-helix state (panel “Low force”).</p

    Unfolding force profiles of the studied protein constructs in constant velocity SMD.

    No full text
    <p>(a) Unfolding forces for 5-helix talin rod R9 and R11 have similar profiles and show two peaks, which correspond to breaking of 5-helix and 3-helix state respectively. (b) R9 constructs with disulphide clamps have similar force profiles to wild-type R9, but unfolding of 3-helix state was blocked. Tandem constructs for (c & d) R9 and (f) α-catenin (M<sub>I</sub>-M<sub>II</sub>) were unfolded through 3-helix state for both monomers simultaneously. (c) R9 (wt)–R9 (wt) tandem showed four peaks, corresponding to breaking of the 5h & 5h→3h (peak I), 5h→3h & 3h (peak II), 3h & 3h→0h (peak III), and 3h→0h & 0h (peak IV) respectively. (d) Tandems with the clamped 3-helix state in one monomer showed three peaks, lacking the peak for unfolding of the clamped 3-helix state. (e) Unfolding force for 4-helix R3 bundle has one peak that corresponds to collapsing of 3-helix state. (f) 4-helix α-catenin showed one peak for breaking the 3-helix state in each domain. Cysteine residues in (d) R9 tandems, that form disulphide clamps shown as magenta spheres. Structure snapshots correspond to force peaks highlighted with red dots.</p
    corecore