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Abstract 

Talin-1 is a key component of the multiprotein adhesion complexes which mediate cell migration, 

adhesion and integrin signalling and has been linked to cancer in several studies. In this study we 

analysed mutations in talin-1 reported in the Catalogue of Somatic Mutations in Cancer. A total of 11 

talin mutants were selected and expressed in talin-deficient fibroblasts and their functional and 

structural effects were characterised in detail. An I392N point mutation in the F3 domain caused a 

three-fold increase in invasion, and enhanced migration compared to wildtype talin. Mutations 

R1368W and L1539P in the R7 and R8 domains caused increased invasion and proliferation and 

affected talin-vinculin complexation, but were not linked to changes in their binding affinities with 

known substrates KANK1 and RIAM measured for isolated talin domains. Lastly, L2509P, a 

mutation in the dimerisation domain of talin, prevented talin dimer formation, actin recruitment and 

FAKpTyr397 activation leading to anisotropic cell spreading and loss of random migration. 

Altogether, this study suggests that cancer derived point mutations in talin-1 can drastically affect 

cell behaviour and so may contribute to cancer progression.   
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Introduction 

For cells to maintain homeostasis and co-operate within tissues, they need to dynamically interact 

with the extracellular matrix (ECM). In recent years the role of the microenvironment has become 

increasingly recognised (Lu et al., 2012) and disturbances between cell-ECM interactions, 

intracellular signalling events, and signals derived from the ECM have been shown to contribute to 

cancer progression. Talin is a major component of focal adhesions (FAs), responsible for mediating 

the link between the ECM via integrins and the actin cytoskeleton. Talin is a large ~250 kDa 

mechanosensitive protein consisting of an N-terminal FERM head domain (F0, F1, F2, F3; residues 

1-405) followed by a linker (~80aa) and ~2000aa rod region comprised of 13 domains (R1 to R13) 

ending in a C-terminal dimerisation domain (DD) (Goult,Zacharchenko et al., 2013). The FERM 

domain interacts with the membrane-proximal NPxY motif of beta integrin tail and the negatively 

charged plasma membrane (Anthis et al., 2009;Tanentzapf and Brown, 2006). The rod domain 

contains two F-actin binding sites (ABS2 and ABS3) (Atherton et al., 2015;Gingras et al., 

2008;Hemmings et al., 1996), 11 vinculin binding sites (VBS) (Gingras et al., 2005) and binding sites 

for regulatory proteins such as RIAM, KANK (Bouchet et al., 2016;Sun,Tseng et al., 2016) and the 

tumour suppressor DLC1 (Haining et al., 2018;Zacharchenko et al., 2016). Studies have shown that 

ABS3 is essential for FA assembly (Kopp et al., 2010), whereas ABS1 and ABS2 have a reinforcing 

role (Kumar et al., 2016;Sun,Guo et al., 2016).  

 

Talin is the main scaffold protein in focal adhesions which form at the leading edge of a polarised 

cell. Talin links the intracellular tails of integrins to the actin cytoskeleton and mechanical forces 

exerted on talin can disrupt and reveal binding sites leading to formation of mature multiprotein FA 

complexes (Goult et al., 2018). These are dynamic processes regulated by a complex signalling 

network, gathering information from intracellular and extracellular events. The mechanical properties 

of the ECM are reflected by intracellular changes via the FA’s and actomyosin network, having a 

direct effect on cell behaviour, such as cell shape, migration and proliferation (Makoto Nagano et al., 

2012;Murrell et al., 2015).  

 

Talin-1 overexpression has been shown to correlate with increased invasion and decreased survival 

with oral squamous cell carcinoma (Lai et al., 2011) as well as migration, invasion and anoikis 

resistance in prostate cancer cells (Sakamoto et al., 2010). Loss of talin-1 leads to diminished in vivo 

metastasis of prostate cancer cells via FAK-Src complex and AKT kinase signalling (Sakamoto et al., 
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2010). Conversely, the downregulation of talin-1 has also been shown to promote hepatocellular 

carcinoma progression (Chen et al., 2017).  

 

The COSMIC (Catalogue Of Somatic Mutations In Cancer) database (Tate et al., 2019) contains exon 

sequencing data of human cancers and provides a vast resource of somatic mutation information. In 

light of talins integral role in regulating cell behaviour, integrin adhesion signalling and its connection 

to cancer progression, we sought to explore how cancer-associated talin mutations may alter talin 

function and the behaviour of cells.  

 

Results 

Most cancer-derived point mutations of talin-1 do not appear to be deleterious and have limited 

influence on cell morphology and polarisation 

To investigate functional consequences of talin-1 point mutations, 368 talin-1 mutations in COSMIC 

database (accessed January 2017) were evaluated, and 258 missense mutations were further screened 

using bioinformatic tools (Fig.1A). Eleven of these mutations were selected for further analysis based 

on the predicted potential to impact structural and functional properties of talin-1.  

 

We investigated each of the 258 point mutations individually and determined the position of the 

mutation within the talin structure (Fig.1B). The pathogenicity of the amino acid substitutions were 

predicted using the PON-P2-algorithm (Niroula et al., 2015), which predicted the mutations in Table 

1 to be pathogenic. We used a BLOSUM62 substitution matrix (Henikoff and Henikoff, 1992) and 

CBSM60 matrix (Liu and Zheng, 2006) to obtain a numeric penalty for each amino acid deviation 

and to predict the protein structure/function, respectively. Next we investigated if the mutations cause 

changes in amino acid polarity as the stability of talin domains are strongly dependent on hydrophobic 

effect (Fillingham et al., 2005;Isenberg et al., 2002). The degree of evolutionary conservation of the 

amino acids in the talin sequence was investigated using ConSurf (Ashkenazy et al., 2016). Finally, 

we evaluated if the mutation is close to known ligand-binding sites. All these factors were used to 

build a scoring coefficient and the weight for each variable was obtained using the manual iteration 

process described in the Supplementary material. Using this scoring, a final eleven mutations were 

selected for further investigation with the E1770Q mutation also included despite a lower score due 

to its location in the previously defined talin autoinhibition site (Goult et al., 2009;Haage et al., 

2018)(Table1; Fig.1B). 
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Table 1. The list of talin-1 point mutations selected from the COSMIC database. In each column a normalised value close 

to 1 predicts defects in protein function. BH=mutation located between helices and DD=dimerisation domain. CBSM60= 

conformation-specific amino acid substitution matrix. BLOSUM62=BLOcks SUbstitution Matrix. 
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P229L 1 Skin Carcinoma F2 BH/buried 0.94 1 1 1 8.20 

I392N 1 Pancreas Carcinoma F3 Buried 0.86 1 0.83 1 8.95 

V577D 1 Liver Carcinoma R1 Buried 0.94 1 1 0.60 8.39 

A893E 2 
Central nervous 

system/pituitary 

Glioma/Cranio

pharyngioma 
R3 BH/buried 0.95 0.75 0.33 0.60 7.63 

R1368W 2 

Hematopoietic 

and lymphoid 

tissue /large 

intestine 

Lymphoid 

neoplasm 

/carcinoma 

R7 Surface 0.98 1 1 1 7.75 

Y1389C 2 Liver 
Carcinoma/car

cinoma 
R7 Buried 0.90 0.87 0.67 1 8.58 

L1539P 1 Liver Carcinoma R8 Buried 0.98 1 1 0.60 8.45 

S1750F 1 Skin 
Malignant 

melanoma 
R9 Buried 0.89 0.87 0.5 0.60 7.55 

E1770Q 1 Breast Carcinoma R9 Surface 0.81 0.37 - 0.33 1 6.01 

D2086V 1 Breast Carcinoma R11 Surface 0.96 1 1 1 7.71 

L2509P 1 Large intestine Carcinoma DD 
DD 

/Surface 
0.96 1 1 0.64 7.46 

 

We evaluated the selected COSMIC mutations against the 1000 Genomes Project database, which is 

a large database of human genetic variant data (Clarke et al., 2012). Five of the eleven mutations were 

not found from the 1000 Genomes (P229L, I392N, L1539P, E1770Q and D2086V) and the other six 

were references only to the COSMIC database, indicating that these mutations have not been found 

in healthy individuals. 

 

We transiently transfected talin double knock-out (TLN1-/-TLN2-/-) mouse embryonic fibroblasts 

(MEF) (Theodosiou et al., 2016) with talin-1 constructs containing the mutations shown in Table 1. 

To evaluate the effect the mutations have on cell morphology, we visualised talin and vinculin in 

transfected cells (Fig.1C) and quantified the effect of the mutations on cell area and circularity 

(Fig.2A,B). Many of the mutations caused little variance on cell morphology when compared to WT, 

except for cells carrying the dimerisation domain (DD) mutation L2509P, which were significantly 

smaller than the WT expressing cells and showed a more circular cell phenotype, indicating a loss in 

cell polarisation.  
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Figure 1: Out of 258 talin-1 mutations found from COSMIC, eleven were selected for further detailed studies. A) 

Flowchart showing the pipeline and bioinformatics tools used to select the eleven mutants from the COSMIC database 

investigated. B) Schematic representation of talin-1 and the positions of the selected missense mutations. C) SUM 
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projections of z-stacks of cells expressing GFP-tagged talin-1 (WT and/or point mutated) and immunolabeled for vinculin. 

Scale bars are 25 µm, zoom-in square size is 12.5µm x 12.5 µm. 

 

Western blot analysis ensured translation of full-length proteins (Fig.S1B). The expression levels 

showed decreased expression for I392N and slightly increased expression for S1750F and D2086V 

but otherwise the expression levels were constant as cells were transfected with equal amounts of 

expression plasmids (Fig.S1A). The adhesion size and abundance were analysed from the cell 

periphery, and did not reveal significant changes in the adhesion area and number between cells 

transfected with various talin mutations (Fig.S2A,B). 

 

We then set out to determine whether the talin mutants affected the expression levels of the well-

characterised adhesion markers vinculin, paxillin, and the phosphorylation level of FAKpTyr397. 

Vinculin expression level was not majorly influenced by the expression of the talin-1 mutants. In 

contrast, expression of the talin mutants, P229L, V577D, A893E, L1539P and D2086V led to lower 

levels of paxillin expression when compared to WT-talin expressing cells (Fig.2C,D). 

 

We further assessed the levels of vinculin, and paxillin within the talin-1 rich adhesion sites with the 

aid of immunofluorescence labelling and confocal imaging (Fig.2E,F). Interestingly, several mutants 

showed decreased levels of these FA components within the adhesion sites compared to cells 

expressing WT talin-1. Furthermore, the mutants R1368W and L1539P showed significantly less 

recruitment of both FA components analysed here. FAKpTyr397 is a marker for adhesion maturation 

and corresponds with mechanical activation of talin and is therefore present only at low level in the 

non-transfected talin double knock-out MEF cells (Rahikainen et al., 2019) enabling us to monitor 

the levels with western blotting (Fig.2G). As indicated by the anisotropic spreading of cells carrying 

the L2509P mutation, FAKptyr397 levels were decreased when compared to WT talin expressing 

cells. Mutants Y1389C and L1539P showed increased FAKpTyr397 levels when compared to WT 

expressing cells, suggesting increased FAK activity.    
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Figure 2: Talin mutations affect cell morphology, cell migration, polarity and FA composition. A, B) Cell area (A) 

and circularity (B) were quantified from microscopy images of cells expressing the transiently transfected talin-1 point 

mutant constructs; n~40 cells per mutation pooled from four separate experiments. C, D) Total expression levels of 

immunolabelled vinculin (C), and paxillin (D) quantified from talin expressing cells; n~30 cells per mutation pooled from 

two separate experiments for each analysis. E, F) Analysis of vinculin (E) and paxillin (F) colocalisation with talin in 

adhesions; n~20 cells per mutation from two separate experiments. G) FAKpTyr397 expression levels quantified from 

two western blots. The statistical analysis was calculated by unpaired t-test. (H) Random migration speed (µm/min) 

determined from time-lapse images of talin expressing cells. I) Cell proliferation analysis in the presence of 10% FBS 

and 0.2% FBS, showing the number of times the cells divide in 12 h; n~80 cells per mutation from four separate 

experiments. The statistical analysis was calculated by t-test, non-parametric test of Mann-Whitney: *P<0.05, **P<0.01, 

***P<0.001 compared to WT for each condition. J) Invasion assay through Matrigel matrix towards 10% FBS containing 

medium. Control cells were mock-transfected with GFP-expressing plasmid. The values are normalised to WT and 

statistical significance measured in comparison to WT. Data are mean +/-SEM. The statistical significance was analysed 

by one-way ANOVA and Bonferroni test (or t-test in C and H): *P<0.05, **P<0.01, ***P<0.001.  
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Cancer-derived talin-1 point mutations affect adhesion composition and promote cell invasion 

and proliferation 

To study the functional characteristics of the talin mutants, we measured random cell migration speed 

on fibronectin-coated coverslips (Fig.2H). WT-transfected cells had an average migration speed of 

0.65 µm/min. I392N was the only mutant that caused increased migration speed (0.82 µm/min). In 

contrast, the mutations R1368W and L2509P showed a significant decrease in cell migration with 

average speeds of 0.54 and 0.37 µm/min, respectively. Cells expressing L1539P showed slightly 

slower migration rate compared to WT expressing cells.  

 

In full-serum conditions the mutants (Fig.2I) and the mock-transfected cells (Fig.S2C) showed 

equally efficient cell division when compared to the WT talin-1 expressing cells. However, during 

serum depletion, I392N, Y1389C and mock-transfected cells showed significant decrease (95%, 71% 

and 47%) and the P229L showed slight increase in cell division (Figs. 2J and S2C) as compared to 

the cells transfected with WT talin-1, suggesting that talin-1 mediated changes can affect cell 

proliferation. 

 

Based on the migration and cell proliferation data, we selected I392N, R1368W, Y1389C, L1539P 

and L2509P for invasion assays and further analysis. We characterised how these five mutants 

affected the ability of cells to invade through a 3D Matrigel matrix. The mutants I392N and R1368W 

showed the highest invasion rates, whereas Y1389C, L1539P and L2509P did not significantly differ 

from WT. Further, the mutant L2509P, which showed a poorly polarised cell phenotype (Fig.2A,B) 

and significantly reduced migration speed on 2D culture (Fig.2H), was only able to promote limited 

cell invasion in 3D (Fig.2J). 

     

The I392N mutation in F3 affects talin head stability and promotes invasion 

I392 is located inside the hydrophobic core of the F3 subdomain (Fig.3B,C). Mutation of Isoleucine 

to Asparagine (I392N) leads to replacement of the highly hydrophobic side chain with a hydrophilic 

side chain. An F3 I392N mutant was insoluble precluding biochemical analysis. Therefore, we 

explored the functional impact of I392N with the aid of molecular dynamics (MD) simulations. MD 

simulation predicted that F3 fold is destabilised by the mutation as water molecules may penetrate 

inside (Fig.3D,E). Alchemical calculations of free energy changes in protein stability upon the 

mutation showed severe destabilisation of talin head by 38.28 ± 1.27 kJ/mol.  
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The mutation is in close proximity to the integrin binding site in F3, (PDB:2H7D (Wegener et al., 

2007)), so might affect integrin binding and alter talin-dependent integrin activation. 

Immunofluorescence analysis of the cells transfected with talin wildtype and I392N mutation were 

analysed for the localisation of FA components paxillin, FAKpY397 and actin (Fig.3F,G,H) but did 

not reveal significant changes in their accumulation to adhesion sites as compared to cells expressing 

WT talin. 
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Figure 3: Isoleucine to Asparagine mutation at position 392 destabilises the F3 subdomain. A) Cartoon of the talin 

head domain and its binding partners. B, C, D, E) Structure snapshots of the F3 subdomain captured at 100 ns of the MD 

simulation for WT (B) and I392N mutant (D). Residue 392 and a water molecule inside the F3 domain in the I392N 

mutant simulation are shown (D). The distance between the residue 392 side chain and closest water molecule as function 

of the MD simulation time in WT (C) and I392N (E) mutant. Three 100-ns simulations are shown. The distance of ~0.6 

nm in the WT indicates that the closest water molecule is located at the F3 surface, while in the I392N mutant the distance 

~0.2 nm indicates that the water molecule penetrated the F3 fold. F, G, H) SUM projections of z-stacks of talin-1 

transfected cells immunolabelled with focal adhesion markers FAKpTyr397 (F), paxillin (G) and actin visualised using 

phalloidin (H). Scale bars are 25 µm.      
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Mutations decrease the stability of R7-R8 and affect vinculin binding, leading to increased 

invasiveness 

To investigate how the mutations R1368W, Y1389C and L1539P affect the overall conformation of 

R7-R8 fragment, MD simulations were performed. Intriguingly, over the course of 100 ns MD, we 

observed formation of a transient interaction between the R7 and R8 domains in the R1368W 

(Fig.S3A). Analysis of the R7–R8 binding free energy using the Molecular Mechanics Poisson-

Boltzmann Surface area (MM-PBSA) method suggested that the R1368W mutation may enhance an 

interaction between R7 and R8 (Fig.4B, Fig.S3A). However, the peak dispersion in NMR remained 

mostly the same with uniform intensity in both spectra, suggesting that R1368W does not 

significantly modulate talin structure (Fig.S3B). In addition, circular dichroism (CD) analysis of the 

R7-R8 R1368W and WT yielded similar spectra, showing no change in thermal stability which 

supports the NMR analysis (Fig.4C).  

 

In contrast, the NMR spectra of R7-R8 Y1389C showed drastic changes in peak positions and loss of 

peak dispersion indicative of a less well folded form compared to the wildtype (Fig.S3C). Mutation 

to cysteine introduces the possibility of a potential to form a disulphide bond. To test whether the 

effects seen are due to disulphide bond formation with the adjacent cysteine (C1392), we performed 

this analysis in the presence and absence of dithiothreitol and saw no difference between the spectra. 

Interestingly, the Y1389C mutation caused a striking 6.5°C reduction in the thermostability of R7-

R8 (45.5°C compared with 52°C for the wildtype) assessed using CD (Fig.4C). MD simulations 

carried out for Y1389C and WT in R7-R8 did not reveal significant structural arrangement of the 

domains, in line with CD spectroscopy analysis which showed no observable changes in the helicity 

of the proteins. 

 

Talin can reveal a number of cryptic VBS along the rod domain, two of which are located in the R7-

R8 region, and are regulated by stability of the α-helical bundles in response to mechanical load (del 

Rio et al., 2009;Gingras et al., 2005;Hytonen and Vogel, 2008). To determine whether vinculin Vd1 

domain (residues 1-258) binding to talin was affected by the R1368W and Y1389C mutations we 

used a size exclusion chromatography assay as previously described (Gingras et al., 2010). Our 

previous study  showed that despite containing two VBS, only one of them is accessible to vinculin 

(Gingras et al., 2010), and here we found that R7-R8 WT and R1368W both only bind one vinculin 

Vd1 molecule (Fig.4E). In contrast, the Y1389C mutation, which is in the core of the R7 domain 

(Fig.4D), can bind two Vd1 molecules, indicating that this mutation enhances the accessibility of the 

R7 vinculin binding site (Fig.4E) and alters the stoichiometry of the R7-R8:vinculin interaction.  
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Figure 4. Influence of point mutations in R7-R8 domains on biophysical properties of talin. (A) Cartoon of the R7-

R8 domains and binding partners. (B) Inter-domain binding energy for R7-R8 WT and R1368W using MM-PBSA for 
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every 250 ps snapshot of the MD trajectory. Data in the table shows that the total inter-domain binding energy in R1368W 

mutant is higher than for WT. (C) Melting temperature curves for R7-R8 WT, R1368W and Y1389C measured using CD 

spectroscopy. (D) Structure snapshots captured at 100 ns of MD for R7-R8 WT (left) and Y1389C (right). (E) Vinculin 

Vd1 binding analysed by size exclusion chromatography for R7-R8 WT (left), R1368W (centre) and Y1389C (right).   

 

MD simulations revealed that the L1539P mutation effectively breaks the structure of helix three (H3) 

in the R8 subdomain (Fig.S4C), and secondary structure analysis using DSSP indicated clear 

disruption of H3 in the L1539P-mutated R8 when compared to wildtype (Fig.S4D). Furthermore, CD 

analysis demonstrated a reduction in thermostability of the R7-R8 L1539P mutant by 3.5°C and 

reduced secondary structure composition (Fig.S4E). Immunostaining showed the L1539P mutation 

had lower vinculin recruitment to focal adhesions (Fig.2E), suggesting that disrupting H3 might affect 

vinculin binding. No changes in DLC1 localisation were observed (Fig.S5), even though the DLC1 

binding site is in R8, adjacent to the mutation (Guorong Li et al., 2011;Zacharchenko et al., 2016).  

 

A Fluorescence Polarisation (FP) assay was used to determine the impact of these mutations on ligand 

binding to R7 and R8.  Neither KANK1 binding to R7 nor RIAM binding to R8 had significant 

differences in binding affinity with the R1368W and Y1389C mutants as compared to WT 

(Fig.S4A,B). The talin-KANK1 interaction is important for coordinating the targeting of 

microtubules to adhesion sites (Bouchet et al., 2016). Consistent with the negligible impact on the 

talin-KANK1 interaction no apparent changes in tubulin organisation between WT, R1368W, 

Y1389C, and L1539P R7-R8 were observed (Fig.S3D, Fig.S5). Together, this analysis points to the 

increased invasiveness of these mutants being a result of altered domain stability and altered 

accessibility of the VBS.   

 

L2509P breaks talin dimerisation, inhibiting polarisation and migration in 2D  

Talin-deficient fibroblasts transfected with L2509P mutant showed drastic changes in cell phenotype 

and notably slower (57%) random cell migration when compared to WT-expressing cells (Fig.2H). 

As the mutation is situated in the dimerisation domain (DD) which forms part of the C-terminal actin 

binding site 3 (Gingras et al., 2008) , we set out to explore the effects of the mutation on dimerisation 

and actin interactions in more detail. We engineered truncated talin-1 constructs with deletions in the 

c-terminus as follows: WT (residues 1-2541), ∆DD (residues 1-2493), ∆R13-DD (residues 1-2299) 

and ∆R1-DD (residues 1-481) (Fig.5B). Immunofluorescence analysis of the cells transfected with 

L2509P, ∆DD, ∆R13-DD and ∆R1-DD showed loss of; i) maturation of adhesion, ii) localisation of 

the FA components and iii) filamentous actin into the adhesion sites, indicating that the point mutation 

L2509P disrupts dimerisation and interaction with actin. Furthermore, all of the constructs led to 
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anisotropic cell spreading (Fig.5C) as observed earlier for cells expressing talin head alone 

(Rahikainen et al., 2019).  

 

 
Figure 5: All talin DD mutants showed a loss of co-localisation with FA markers. A) Cartoon of the R13-DD 

dimerisation domain bound to actin. B) Schematic representation of the point mutation L2509P in full length talin and 

the truncations; ΔDD, ΔR13-DD and ΔR1-DD. C) SUM projections of z-stacks of cells expressing WT, L2509P, ∆DD, 

∆R13-DD talin and immunolabeled against vinculin, FAKpTyr397 and paxillin. Fluorochrome-conjugated phalloidin was 

used to visualise actin filaments. No clear localisation of any of the FA components was evident with any of the mutants. 

Scale bars are 25 µm. 
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MD simulations revealed high flexibility of the mutated helix as the proline in the mutant form, breaks 

the helix structure (Fig.6A). This disruption of the coiled coil is expected to affect the dimerisation 

of talin and thus actin binding. Size exclusion chromatography showed that wildtype R13-DD 

(residues 2300-2541) is a constitutive dimer consistent with our previous study (Gingras et al., 2008). 

In contrast the L2509P mutant of the R13-DD runs as a monomer, confirming that the proline is 

breaking the helix and disrupting talin dimerisation (Fig.6B). The impact on cell migration, invasion, 

area and circularity was the same for the L2509P and the truncated mutants whether we removed the 

entire rod, R13-DD, DD or applied the point mutation L2509P (Fig.6C,D,E,F). 

 

Since many cell types express both, talin-1 and talin-2, we were curious to see if L2509P could have 

a dominant effect over talin-2. Indeed, we found that migration speed decreased significantly for 

talin-1 L2509P even in the presence of talin-2 when compared to cells co-transfected with both WT 

talins or as compared to cells expressing talin-2 alone (Fig.6G).  
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Figure 6: The L2509P mutant severely impacts talin function. A) MD simulation of DD helix showing high flexibility 

of the helix caused by L2509P compared to the WT. Superposition was performed using C-alpha atoms of residues 2510 

to 2529. The angle (γ) in L2509P mutant and WT DD in single helix measured as a function of time. B) SEC-MALS 

analysis of R13-DD WT and L2509P showing that the R13-DD L2509P is monomeric. C) Migration speed on 2D surface 

showing reduced migration speed in all mutated/truncated constructs in comparison to WT. D) Cell invasion through 

Matrigel in 3D environment showing the invasiveness potential of the L2509P and truncated talin constructs. Invasion 

assay was repeated at least three times in triplicate chamber for each construct. E, F) Cell area (E) and cell circularity (F) 

analysis showing decreased cell surface area and reduced polarisation of the mutated/truncated constructs compared to 

WT; n~70 cells from three separate experiment. Data is normalised to WT (WT = 100%). Data are mean +/-SEM. The 

statistical significance of all results analysed by one-way ANOVA and Bonferroni test: *P<0.05, **P<0.01, ***P<0.001. 

G) Migration assay on 2D surface showing reduced migration speed in the cells co-transfected with talin-1 L2509P and 

full-length WT talin-2. The statistical significance of all results analysed by one-way ANOVA and Bonferroni test: 

*P<0.05, **P<0.01, ***P<0.001. The results are normalised with only WT talin-1 (blue) or WT talin-1+ WT talin-2 (red).    
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Discussion 

Talin is a central regulator of cell adhesion to the ECM and is critical for integrin activation and FA 

formation. It provides mechanical linkage between ECM and actin cytoskeleton, and is an essential 

scaffold for the organisation of the FA multi-protein complex (Zhang et al., 2008). Loss of anchorage-

dependent growth, changes in ECM remodelling, and cytoskeletal changes are necessary for cancer 

progression (Jaalouk and Lammerding, 2009). There are two isoforms of talin, talin-1 and talin-2, 

which show different expression patterns. While talin-1 is expressed in all tissues, talin-2 has more 

variability and overall lower expression levels. Overall expression levels, derived from GEPIA gene 

expression server (Tang et al., 2017), indicate that talin-1 expression levels show more variance 

between different cancers and their counterpart healthy tissues than those of talin-2. Due to the more 

ubiquitous nature of talin-1 (Fig.7), we only assess the talin-1 mutations here. Several cancer types 

show significant changes in talin-1 expression level. The highest overexpression is associated with 

Glioblastomas (GBM; >300%), Brain Gliomas (LGG; >300%) and Pancreatic adenocarcinomas 

(PAAD; >300%). In contrast, the most drastic talin-1 downregulation is seen in uveal melanoma 

(UCS; -25%) and endometrial carcinoma of the uterine (UCEC; -25%) (Fig.7).  
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Figure 7: Talin-1 and talin-2 gene expression profiles across tumour and paired normal samples. Expression levels 

taken from GEPIA database, at the time of analysis GEPIA contained 9662 tumour and 5540 normal samples across 33 

cancer types.  

 

With the aid of biochemical analyses, molecular modelling and functional cell biology assays, we 

found that mutations in talin-1 affect cellular processes linked with cancer progression, such as 

migration, invasion and proliferation. We have shown previously that the mechanical stability of the 

talin rod alpha-helix bundles can be drastically influenced by point mutations and these small changes 

can further lead into changes in traction forces and cellular response (Goult,Zacharchenko et al., 

2013;Han et al., 2019;Rahikainen et al., 2017). Furthermore, point mutations in talin can have 

dramatic effects on cell behaviour (Gingras et al., 2008;Goult,Xu et al., 2013;Rahikainen et al., 2017). 
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Out of the eleven mutants studied here, I392N, originally found from pancreatic carcinoma, had the 

most pronounced effect in terms of activating migration and invasion. However, this mutation also 

showed lower talin expression levels when compared to WT and other mutants transfected similarly 

(Fig.S1A) suggesting that the mutation could affect talin stability and expression levels.  

 

The R7-R8 domains have cooperative function, with R8 sitting outside the force transduction 

pathway, and protected from mechanical stress by R7 (Yao et al., 2016). In addition, there are binding 

sites for multiple molecules such as KANK, DLC1, RIAM, paxillin and vinculin in both domains. 

We found that random migration on 2D and invasion through Matrigel, were significantly affected 

by the mutation R1368W (Fig.2H,J). MD simulation suggested that the R1368W mutant might 

enhance interactions between R7 and R8 domains (Fig.4B), which might perturb the localisation of 

the FA markers within adhesion (Fig.2E,F) affecting cell behaviour. However, binding affinity for 

KANK and protein stability remained consistent with WT, suggesting that the cellular effects of this 

mutation could be due to an, as of yet, unidentified R7 function perturbed in this mutant. 

 

One of the interesting findings was the effect the Y1389C mutation in R7 had on vinculin binding. 

The VBS in R7 is one of the hardest to expose (Gingras et al., 2010) but can be stretch activated (Yao 

et al., 2016), however, the Y1389C mutation significantly enhanced the VBS accessibility (Fig.4E). 

Gel filtration analysis of vinculin Vd1 binding to Y1389C revealed that while R7-R8 WT and the 

R1368W mutant only bind a single Vd1 molecule, the R7-R8 Y1389C was able to bind two Vd1 

(Fig.4E). This suggests that introduction of the mutation destabilises the R7 helical bundle, allowing 

vinculin binding more readily in the absence of force. Furthermore, reduced R7 stability will likely 

have a knock-on effect on R8 stability which may indirectly lead to signalling defects by perturbing 

R8 (Haining et al., 2018). Interestingly, the destabilisation of R7 did not impact on KANK binding 

nor cause changes in microtubule network but it did result in enhanced migration and proliferation. 

The additional actin recruitment via vinculin could have a direct effect on FA dynamics by facilitating 

formation of talin-vinculin pre-complexes, necessary to enable efficient adhesion maturation (Han et 

al., 2019). This could also affect actomyosin contractility and Rho/ROCK signalling, which have 

been shown to regulate cell proliferation (Kumper et al., 2016). Enhanced adhesion maturation was 

also suggested by the increased pFAK397 levels seen with this mutant.    

 

The most striking phenotype was seen in cells expressing talin mutant L2509P. These cells were 

unpolarised, small, lacking mature FAs, and showed complete loss of random migratory behaviour. 

This mutation sits in the talin dimerisation domain, a single helix which forms an antiparallel dimer. 
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Interestingly, the same phenotype was observed with complete removal of the dimerisation domain 

helix (∆DD) as with L2509P point mutation. Size exclusion chromatography with multi-angle light 

scattering (SEC-MALS) analysis of the wildtype R13-DD showed a constitutive dimer in solution 

whilst the L2509P mutant resulted in complete loss of dimerisation (Fig.6B). We also detected that 

overexpression of vinculin in L2509P transfected cells led to the polarisation of cells (data not 

shown), consistent with our previous findings that stabilising the talin link to actin via vinculin can 

rescue the phenotype (Rahikainen et al., 2019). 

 

Focal adhesion dynamics affect cell proliferation by regulating YAP activation and Hippo pathway, 

which are balanced between negative signals such as contact inhibition and promoting mitogenic 

signalling such as growth factors and hormones. Cell shape and mechanotransduction are known to 

regulate YAP activity, as stretched cells on stiff ECM positively regulate YAP nuclear localisation 

(Dupont et al., 2011). This regulation is believed to be independent of the canonical Hippo-pathway 

or cell-cell junctions but mediated by Rho-ROCK signalling and actin dynamics (Gumbiner and Kim, 

2014). However, cell adhesion to fibronectin, but not poly-D-lysine or laminin, can promote YAP 

translocation via the canonical Hippo pathway, suggesting that adhesion-mediated integrin activation 

can mimic mitogen-caused activation, without the presence of soluble mitogenic growth factors (Kim 

and Gumbiner, 2015). This possibly explains the rescue of cell proliferation of mock-transfected cells 

in serum-free conditions by talin expression. Interestingly, mutants I392N, Y1389C and L2509P all 

decreased proliferation in low-serum conditions with I392N showing increased migration and 

L2509P decreased migration further highlighting the complexity of the signalling. The exact 

signalling pathways affected by these talin mutations would be interesting targets for further studies. 

 

In this study, we explored hundreds of talin-associated mutations and selected 11 mutants for 

thorough analysis. Out of those, two mutants promoted cell invasion, one mutant significantly 

accelerated cell migration in 2D and eight mutants enhanced cell proliferation. The contribution of 

talin to cancer progression is timely. During this study, ~200 more cancer-associated talin mutations 

have been added to the COSMIC database and there are recent studies discussing the connection 

between talin and cancer (Huang et al., 2020;Malla and Vempati, 2020). The work we present here 

demonstrates how single point mutations in talin can drastically alter cell behaviour, potentially 

contributing to cancer metastasis.  
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Materials and methods  

Cell lines and talin constructs 

Theodosiou et al. (Theodosiou et al., 2016) previously described the TLN1-/-TLN2-/- mouse 

embryonic fibroblast (MEF) cell line. Cells were maintained in a humidified 37°C, 5% CO2 incubator. 

High glucose Dulbecco´s modified Eagle medium (DMEM) supplemented with 10% fetal bovine 

serum (FBS) was used in all experiments except in the starvation conditions where 0.2% serum was 

used. The cell line was regularly tested for mycoplasma contamination. Talin variants were subcloned 

into a modified pEGFP-C1 vector backbone (Clontech). Cells were transfected with 6 µg plasmid 

DNA per 106 cells using Neon transfection system (Thermo Fisher Scientific) using parameters 1400 

V, 30 ms, one pulse. The expression constructs for cell culture experiments with the c-terminal EGFP-

tag are as follows: wild-type talin-1 1-2541; ∆R13-DD (1-2299); ∆DD (1-2493); ∆R1-DD (1-481) 

and the point mutants in the full length talin-1 P229L, I392N, V557D, A893E, R1368W, Y1389C, 

L1539P, S1750F, E1770Q, D2086V, L2509P.    

 

Migration and Matrigel invasion analysis 

Transfected cells were incubated for 24 h, trypsinized and plated on the well-plates coated with 10 

µg/ml fibronectin. Cells were allowed to attach for 90 minutes, after which the medium was changed. 

The time-lapse images captured with EVOS FL auto microscope (Thermo Fisher Scientific) were 

analysed manually using ImageJ (Fiji) and MTrackJ plugin (Meijering et al., 2011;Schneider et al., 

2012). 

 

Corning BioCoat Matrigel Invasion Chamber containing an 8-micron pore size PET membrane with 

a thin layer of Matrigel basement membrane matrix were used for the invasion assay. Transfected 

TLN1-/-TLN2-/- MEF cells were cultured overnight, followed by cultivation in starvation medium 

containing 0.2% FBS for 40-45 h. Number of transfected cells was measured by Luna-FL dual 

Fluorescence Cell Counter (BioCat GmbH) Chambers prepared according to the manufacturer. 

DMEM medium containing 10% FBS was used as chemoattractant in the lower level of chamber. 

The chamber plate was incubated at humidified 37°C and 5% CO2 incubator for 24 h, after which the 

cells were fixed with 100% methanol. Cells were stained with 0.2% crystal blue for 10 minutes 

following by rinsing the excess stain. The non-invaded cells were removed from the upper membrane 

surface using cotton tipped swab. The inserts were allowed to air dry overnight. The membrane was 

removed using scalpel and placed bottom side down on a microscope objective slide on which a small 

drop of immersion oil. The membranes were scanned using PRIOR OpenStand microscope using 20x 
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objective and Jilab SlideStrider software (1.2.0). The invaded cell area was calculated using ImageJ 

(Fiji). Invasion assay was repeated at least three times in triplicate chamber for each selected 

construct.   

 

Immunostaining and confocal imaging 

After 24 h transfection, cells were trypsinized and plated on coverslips coated with 10 µg/ml 

fibronectin and incubated for 24 h. Cells were fixed with 4% paraformaldehyde, permeabilised and 

immunostained using standard protocol. Antibodies are listed in Table S1.   

 

Immunostained samples were imaged with Zeiss Cell ObserverZ1 inverted microscope and LSM 780 

confocal unit (Zeiss, Oberkochen, Germany) using 63x/1.4, WD 0.19 mm oil immersion objective. 

Images were taken using Zeiss Zen Black software and analysed by ImageJ as described previously 

(Rahikainen et al., 2019). Within each experiment, the imaging parameters were kept constant to 

allow quantitative image analysis. Detailed image analysis is described in Supplementary material. 

 

Western blotting 

Transfected cells were grown for 24 h, lysed with RIPA buffer supplemented with protease inhibitor 

cocktail (Sigma-Aldrich lot#126M4016V). After centrifugation, cell lysates were applied on an SDS-

PAGE to separate protein. A wet blot system was used to transfer the separated protein from gel onto 

a polyvinylidene fluoride (PVDF) membrane. Blots were quantified using ImageJ. Antibodies are 

listed in Table S1. 

    

Constructs for protein expression in E. coli  

The talin-1 fragments, generated using full-length talin-1 as a template, were introduced into a 

modified pHis vector to create N-terminal His6-tag constructs. The His6-tag is separated from talin 

fragment by an eleven-residue linker: SSSGPSASGTG. Mutagenesis was performed using 

QuikChange II Site-Directed Mutagenesis kit. Talin constructs were expressed in BL21(DE3) E. coli 

cells and induced with 0.1 mM IPTG at 18°C for overnight. Clarified lysates were loaded onto an 

affinity column (HisTrap HP 5 ml; GE Healthcare). Eluted protein was further purified using anion 

exchange column (HiTrap Q HP 5 ml; GE Healthcare) before buffer exchange into PBS and stored 

at -20°C. 
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NMR Spectroscopy and Fluorescence Polarisation Assay 

Talin constructs were grown in 2M9 minimal media with 15N-labelled NH4Cl. Protein was purified 

as above and buffer exchanged into 20 mM Na-phosphate pH 6.5, 50 mM NaCl, 2 mM DTT, 5% 

(v/v) D2O. NMR spectra were obtained at 298 K on a Bruker AVANCE III 600 MHz spectrometer 

equipped with CryoProbe. All R7-R8 1H,15N‐HSQC spectra were obtained at a concentration of 160 

µM. For fluorescence polarisation (FP) experiments, peptides were synthesised by GLBiochem 

(China) and coupled with either BODIPY or Fluorescein dye via a C-terminal cysteine residue.  

 

Size Exclusion Chromatography with Multi-Angle Light Scattering  

Talin R13-DD wild-type and L2509P were analysed by SEC-MALS at a concentration of 100 μM at 

room temperature with a Superdex 75 column (GE Healthcare Life Sciences). Eluted proteins were 

analysed with Viscotek SEC-MALS 9 and Viscotek RI detector VE3580 (Malvern Panalytical). 

Molecular mass was determined using OmniSEC software. For analysis of Vd1 binding to talin, 

proteins were incubated at a 1:1 ratio at a concentration of 100 µM and analysed at room temperature.  

 

MD Simulations 

RCSB PDB structures were used as starting conformations for MD: 2H7E for F3 (Wegener et al., 

2007), 2X0C for R7-R8 (Gingras et al., 2010) and 2QDQ for DD domain (Gingras et al., 2008). The 

R7-R8 binding energy was calculated using MM-PBSA (Kumari et al., 2014). Structural analysis was 

performed using PyMOL and VMD (Humphrey et al., 1996). MD simulations were performed using 

Gromacs (Abraham et al., 2015) at the Sisu supercomputer, CSC, Finland. The CHARMM27 force 

field (MacKerell et al., 1998) and explicit TIP3P water model (Jorgensen and Madura, 1983) in 0.15 

M KCl solution were used. The energy minimisation of the system was performed in 10000 steps. 

The system was equilibrated in three phases using harmonic position restraints on all heavy atoms of 

the protein. Integration time step of 2 fs was used in all the simulations. NPT ensemble was 

maintained at 310 K using the V-rescale algorithm (Bussi et al., 2007), and 1 atm using Berendsen 

algorithm (Berendsen et al., 1984). Alchemical free energy calculations were prepared using PMX 

(Gapsys et al., 2015). The simulations were performed using Amber99SB*‐ILDN force field 

(Lindorff-Larsen et al., 2010) and TIP3P water model in 0.15 M NaCl solution, following standard 

procedure. The whole calculation was repeated three times and average free energy value was 

obtained. 
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Supplementary Figures 

 

  
Figure S1: A) Quantification of Western Blots showing talin expression level in the analysed cells (GFP/actin). B) 

Western Blots used for quantification of talin expression. Blots are immunolabelled against GFP (top) and actin (bottom). 

C) Western Blots used for quantification of FAKpTyr397. Blots are immunolabelled against FAKpTyr397 (top) and actin 

(bottom).  
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Figure S2: A, B) Graphs showing the results of adhesion site analysis; n~30 cells from two separate experiment. Results 

are shown as the ratios of adhesion area per total selected area from cell (A) or as number of adhesions per selected area 

(B). The statistical significance of all results was analysed by one way ANOVA and Bonferroni test: P>0.05, not 

significant. Due to lack of polarity and seemingly disturbed focal adhesions, L2509P was not included in this analysis (C) 

Cell division analysis in the presence of 10% FBS and 0.2% FBS defined by the average number of times the cells divide 

in 12 hours; GFP = transfected mock cells with empty vector; n~ 100 cells from three separate experiment. The statistical 

analysis was calculated by t-test, non-parametric test of Mann-Whitney: *P<0.05, **P<0.01, ***P<0.001 in comparison 

to WT for each condition.  

 

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.03.25.008193doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.008193
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 

 

 
Figure S3: A) Talin rod R7-R8 fragment MD simulations for WT and R1368W. Notice the distance between the domain 

in the WT and R1368W (B) NMR spectra of R7-R8 WT (black) and R7-R8 R1368W (orange) peaks. (C) NMR spectra 

of R7-R8 WT (black) and R7-R8 Y1389C (red) peaks. (D) Representative confocal immunofluorescence images of the 

co-localisation of FA proteins (FAKpTyr397 and paxillin) and tubulin organisation in the cells with talin WT, R1368W 

and Y1389C. Scale bars are 25 µm, zoom-in square size is 12.5µm x 12.5 µm.  
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Figure S4: (A, B) Fluorescence Polarisation (FP) for the R7-R8 fragment of WT, R1368W and Y1389C showed no 

significant changes in the interaction with KANK (A) and RIAM (B). Fluorescence polarisation assays were performed 

using protein serially diluted from a starting concentration of 75 µM with target RIAM peptide (4-30) concentration at 1 

µM, and 60 µM with target KANK1 peptide (30-68) at 1 µM. Measurements were taken using a CLARIOstar plate reader 
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(BMGLabTech) at 20°C. GraphPad Prism 7 software was used for data analysis with one-site total binding equation used 

to generate a Kd. (C) MD simulation for L1539P in R8; the R7-R8 was used in the simulations, but the analysis performed 

on R8. Proline breaks the secondary structure and increase the flexibility of the domain. R7 is shown in grey and R8 in 

green. (D) Three replicates of the secondary structure analysis (DSSP) run for talin-1 R8 domain in WT and L1539P 

mutation showing changes in the stability of H3. (E) CD spectra (190-260 nm) and melting temperature analysis (222nm) 

of R7-R8 WT and L1539P showing a loss of cooperative unfolding for the mutation.   

 

 
Figure S5: Immunofluorescence analysis for the co-localisation of FA proteins (FAKpTyr397, paxillin), and DLC1 and 

tubulin in the cells transfected with talin WT and L1539P mutation. Scale bars are 25 µm.    

 

 

Supplementary Materials and Methods  

Screening TLN1 mutations using bioinformatics 

In order to classify all mutations into different classes and groups, we used structural information 

from the protein data bank (PDB): 3IVF (Elliott et al., 2010), 4F7G (Song et al., 2012), 1SJ7 

(Papagrigoriou et al., 2004), 2L7A  (Goult et al., 2013), 2X0C (Gingras et al., 2010), 2KBB (Goult 

et al., 2009), 3DYJ (Gingras et al., 2009) and 2QDQ (Gingras et al., 2008). We examined each 

mutations position on the talin domains and the location on the structure (surface or buried). This was 

done using an algorithm developed by our group (Nurminen and Hytönen, 2018) and using PyMOL 

software to visually observe the position of the mutation. The mutations were classified using PON-

P2 tool into pathogenic, neutral and unknown to obtain the probability for pathogenicity. PON-P2 is 
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freely available at http://structure.bmc.lu.se/PON-P2/ (Niroula et al., 2015). The BLOSUM 62 matrix 

(Henikoff and Henikoff, 1992) was used to evaluate the severity of the mutations. The degree of 

evolutionary conservation of the amino acid in the talin-1 sequence was investigated using ConSurf 

(https://consurf.tau.ac.il/ (Ashkenazy et al., 2016)). The amino acid substitution matrices CBSM60 

was used to analyse the sequence-structure relationship of the protein (Liu and Zheng, 2006). We also 

investigated whether the mutation was located in known ligand-binding sites and reported the 

recurrence and the substitution of the amino acid from hydrophobicity to hydrophilicity and vice 

versa. The mutations were classified into six group based on their location: surface, buried, on a loop, 

on a linker but buried, between the helices buried, and on the dimerisation domain. These were given 

the position code of 0.4, 1, 0.2, 1, 0 and 0.8 respectively. For the change in polarity, we gave a score 

of one when the amino acid was mutated from hydrophilic residue to hydrophobic residue or from 

hydrophobic residue to hydrophilic residue. Considering all these variables, we estimated the scoring 

coefficient according to the importance feature of each factor using formula n1X1+n2X2+…+nnXn (n 

is the scoring coefficient and X is the variable). We tried multiple scoring factor combinations to 

obtain mutations appearing most frequently with a high score. Finally, we generated a table from 

which we selected ten mutants predicted to represent the most drastic mutations based on “total 

score”. The scoring coefficient to calculate the “total score” of one iteration in Table 1 is as follows: 

2*(location within the subdomain code) + 0*(ligand binding code) + 4*(ConSurf code) + 

0*(BLOSUM 62) + 2*(PON-P2) 1* (CBSM60) + 0.05*(polarity change from hydrophilic to 

hydrophobic) + 0.4*(polarity change from hydrophobic to hydrophilic). Altogether, nine iterations 

were done.   

 

Prediction of the deleterious effect of mutation 

We normalised the score for each investigated amino-acid substitution between zero and one, with 

one being the most deleterious. Considering all these factors, we calculated a final score using 

equation n1X1+n2X2+…+nnXn by giving different indexes (scoring coefficient, n) a range of zero to 

five, where a higher value indicated a greater effect of the variant. Using the variables (X), “location 

within the subdomain”, “ligand binding”, “ConSurf”, “BLOSUM62”, “PON-P2”, “CBSM60” and 

“polarity change” we tested different relative weightings (for example 2, 0, 4, 0, 2, 1, 0.05, 0.4) and 

ran nine iterations. Each time, we pooled the top 10 mutations which had the highest score. Based on 

these criteria, 78 mutants received a score above five, and 10 mutations with the highest scores (>7) 

likely to be detrimental were taken forward for further analysis.  
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Antibodies 

Table S1: Antibodies used in this study. Antibodies were diluted in 1.5% BSA, 0.1% Triton-X /PBS buffer. Appropriate 

secondary antibodies from LI-CORE and a LI-CORE imaging system was used. 

Antibody Manufacturer Method Dilution used 

anti-vinculin Merck, clone hVIN, V9131, 

RRID:AB_477629 

Immunostaining/ 

Western blot 

1:100 / 1:1000 

anti-FAK-pY397 Abcam, ab81298 [EP2160Y], 

RRID:AB_1640500 

Immunostaining/ 

Western blot 

1:100 / 1:1000 

anti-paxillin BD Biosciences, 349/Paxillin, 

610051, RRID:AB_397463 

Immunostaining/ 

Western blot 

1:100 / 1:1000 

GFP antibody Sicgen AB0020-200 Western blot 1:1000 

Actin Millipore, MAB 1501R, RRID: 

AB_2223041 

Western blot 1:2000 

Alexa Fluor 568 

phalloidin 

Life Technologies Immunostaining 1:40 

Alexa Fluor 568 goat 

anti-rabbit IgG 

Life Technologies A11011 Immunostaining 1:200 

Alexa Fluor 568 goat 

anti-mouse IgG 

Molecular probes, A11004 Immunostaining 1:200 

 

Image analyses 

Protein expression level and co-localisation quantification from confocal images. For the 

quantification of expression level of proteins, the total intensity signal was determined from 

transfected cells. For the co-localisation quantification of protein intensity, 10-15 adhesion sites per 

cell were selected based on the EGFP-talin channel using circular selection (0.7 µm) of ImageJ and 

selection was copied to the red fluorescence channel. Background was assessed from the EGFP 

channel using circular selections (2.2 µm) from areas devoid of EGFP signal and these areas were 

again copied to the red fluorescence channel. Protein expression and co-localisation was measured 

using ImageJ.  
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Analyses of adhesion size and number. To determine the adhesion size and number in transfected 

cells, we conducted particle analysis using ImageJ particle analyser. First, the threshold range was set 

to clear out the background noise. Then we selected areas from cell boundaries (roughly one third of 

the cell membrane) and analysed the adhesions sites based on the signal from the EGFP channel. Cut-

off sizes of < 0.1 and > 20 µm2 were used in the analyses. Results are shown as ratio of adhesion area 

and as the number of individual adhesions sites per total selected area per.    
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