30 research outputs found

    Puppet on a String: Paradigms, Processes and Practices of The Finger Players

    Get PDF
    Master'sMASTER OF ART

    Extreme shear-deformation-induced modification of defect structures and hierarchical microstructure in an Al–Si alloy

    Get PDF
    Extreme shear deformation is used for several material processing methods and is unavoidable in many engineering applications in which two surfaces are in relative motion against each other while in physical contact. The mechanistic understanding of the microstructural evolution of multi-phase metallic alloys under extreme shear deformation is still in its infancy. Here, we highlight the influence of shear deformation on the microstructural hierarchy and mechanical properties of a binary as-cast Al-4 at.% Si alloy. Shear-deformation-induced grain refinement, multiscale fragmentation of the eutectic Si-lamellae, and metastable solute saturated phases with distinctive defect structures led to a two-fold increase in the flow stresses determined by micropillar compression testing. These results highlight that shear deformation can achieve non-equilibrium microstructures with enhanced mechanical properties in Al–Si alloys. The experimental and computational insights obtained here are especially crucial for developing predictive models for microstructural evolution of metals under extreme shear deformation.This article is published as Gwalani, Bharat, Matthew Olszta, Soumya Varma, Lei Li, Ayoub Soulami, Elizabeth Kautz, Siddhartha Pathak et al. "Extreme shear-deformation-induced modification of defect structures and hierarchical microstructure in an Al–Si alloy." Communications Materials 1, no. 1 (2020): 85. doi: https://doi.org/10.1038/s43246-020-00087-x. © The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation

    Household, community, sub-national and country-level predictors of primary cooking fuel switching in nine countries from the PURE study

    Get PDF
    Introduction. Switchingfrom polluting (e.g. wood, crop waste, coal)to clean (e.g. gas, electricity) cooking fuels can reduce household air pollution exposures and climate-forcing emissions.While studies have evaluated specific interventions and assessed fuel-switching in repeated cross-sectional surveys, the role of different multilevel factors in household fuel switching, outside of interventions and across diverse community settings, is not well understood. Methods.We examined longitudinal survey data from 24 172 households in 177 rural communities across nine countries within the Prospective Urban and Rural Epidemiology study.We assessed household-level primary cooking fuel switching during a median of 10 years offollow up (∼2005–2015).We used hierarchical logistic regression models to examine the relative importance of household, community, sub-national and national-level factors contributing to primary fuel switching. Results. One-half of study households(12 369)reported changing their primary cookingfuels between baseline andfollow up surveys. Of these, 61% (7582) switchedfrom polluting (wood, dung, agricultural waste, charcoal, coal, kerosene)to clean (gas, electricity)fuels, 26% (3109)switched between different polluting fuels, 10% (1164)switched from clean to polluting fuels and 3% (522)switched between different clean fuels

    Household, community, sub-national and country-level predictors of primary cooking fuel switching in nine countries from the PURE study

    Get PDF

    A genome-wide association search for type 2 diabetes genes in African Americans.

    Get PDF
    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations

    Micromechanical investigations of the remarkable damage tolerance in tooth-enamel of Hadrosaurid dinosaurs

    No full text
    Overview: The principal objective of this research is to understand the biomechanical form, function, and structure of the enamel (a ceramic-like composite) known as aprismatic coarse wavy enamel (CWE) in the grinding dentition of large herbivores hadrosaurid dinosaurs. Our preliminary analysis of this tissue shows an undulating wavy structure in WE composed of folded layers of hydroxyapatite crystallites separated by thin layers of loosely aggregated interlayer matrix. This study specifically focuses on how the undulating wavy structure of this enamel helped dinosaurs’ teeth to deflect cracks and provided the exceptional strength and toughness to mitigate the effects of fracture promoting sediments while masticating. A set of experimental tasks involving microstructure characterization and small-scale mechanical testing techniques were proposed to achieve the following principal objectives: For microstructural characterization we used optical microscopy (surface topography), scanning electron microscopy (SEM) (surface morphology), Raman spectroscopy (molecular fingerprint) and atom probe tomography (atomic scale composition). This was correlated with the small-scale testing techniques like spherical nanoindentation (sub µm to 10s of µm volume- achieved by changing indenter radius) and more specialized in-situ micropillar compression testing (few µm to 10s of µm volume – achieved by changing pillar dimensions). These tests were performed for: a) Individual layers probing local response and b) for bulk CWE probing global response. The structure property relationship showed the most prominent effect of elastic mismatch present among the individual layers and the undulating wavy interfaces in influencing the damage tolerance behavior of CWE. Furthermore, the findings of this study were employed to develop a bio inspired damage tolerant metal-ceramic metal ceramic nanocomposite laminate with elastic mismatch and a degree of undulating interfaces present among the alternating metal ceramic layers. The fracture experiments revealed similar crack deflection behavior as seen in CWE. The knowledge gained from this thesis research will be advantageous in 1) Applied materials sciences: the field of multilayer composites where alternating layers of stiff vs. compliant material along with the introduction of waviness among the layers (similar to WE structure) has showed improved crack deflection abilities and 2) Evolutionary biology and paleontology, where understanding gained from this research can be applied to more complex grinding dentition like modified radial enamel (MRE) found in the grinding dentition of horses, bovids, suids etc., and irregular enamel found in mammoths and elephant

    Micromechanical investigations of the remarkable damage tolerance in tooth-enamel of Hadrosaurid dinosaurs

    No full text
    Overview: The principal objective of this research is to understand the biomechanical form, function, and structure of the enamel (a ceramic-like composite) known as aprismatic coarse wavy enamel (CWE) in the grinding dentition of large herbivores hadrosaurid dinosaurs. Our preliminary analysis of this tissue shows an undulating wavy structure in WE composed of folded layers of hydroxyapatite crystallites separated by thin layers of loosely aggregated interlayer matrix. This study specifically focuses on how the undulating wavy structure of this enamel helped dinosaurs’ teeth to deflect cracks and provided the exceptional strength and toughness to mitigate the effects of fracture promoting sediments while masticating. A set of experimental tasks involving microstructure characterization and small-scale mechanical testing techniques were proposed to achieve the following principal objectives: For microstructural characterization we used optical microscopy (surface topography), scanning electron microscopy (SEM) (surface morphology), Raman spectroscopy (molecular fingerprint) and atom probe tomography (atomic scale composition). This was correlated with the small-scale testing techniques like spherical nanoindentation (sub µm to 10s of µm volume- achieved by changing indenter radius) and more specialized in-situ micropillar compression testing (few µm to 10s of µm volume – achieved by changing pillar dimensions). These tests were performed for: a) Individual layers probing local response and b) for bulk CWE probing global response. The structure property relationship showed the most prominent effect of elastic mismatch present among the individual layers and the undulating wavy interfaces in influencing the damage tolerance behavior of CWE. Furthermore, the findings of this study were employed to develop a bio inspired damage tolerant metal-ceramic metal ceramic nanocomposite laminate with elastic mismatch and a degree of undulating interfaces present among the alternating metal ceramic layers. The fracture experiments revealed similar crack deflection behavior as seen in CWE. The knowledge gained from this thesis research will be advantageous in 1) Applied materials sciences: the field of multilayer composites where alternating layers of stiff vs. compliant material along with the introduction of waviness among the layers (similar to WE structure) has showed improved crack deflection abilities and 2) Evolutionary biology and paleontology, where understanding gained from this research can be applied to more complex grinding dentition like modified radial enamel (MRE) found in the grinding dentition of horses, bovids, suids etc., and irregular enamel found in mammoths and elephant

    Micromechanical investigations of the remarkable damage tolerance in tooth-enamel of Hadrosaurid dinosaurs

    No full text
    Overview: The principal objective of this research is to understand the biomechanical form, function, and structure of the enamel (a ceramic-like composite) known as aprismatic coarse wavy enamel (CWE) in the grinding dentition of large herbivores hadrosaurid dinosaurs. Our preliminary analysis of this tissue shows an undulating wavy structure in WE composed of folded layers of hydroxyapatite crystallites separated by thin layers of loosely aggregated interlayer matrix. This study specifically focuses on how the undulating wavy structure of this enamel helped dinosaurs’ teeth to deflect cracks and provided the exceptional strength and toughness to mitigate the effects of fracture promoting sediments while masticating. A set of experimental tasks involving microstructure characterization and small-scale mechanical testing techniques were proposed to achieve the following principal objectives: For microstructural characterization we used optical microscopy (surface topography), scanning electron microscopy (SEM) (surface morphology), Raman spectroscopy (molecular fingerprint) and atom probe tomography (atomic scale composition). This was correlated with the small-scale testing techniques like spherical nanoindentation (sub µm to 10s of µm volume- achieved by changing indenter radius) and more specialized in-situ micropillar compression testing (few µm to 10s of µm volume – achieved by changing pillar dimensions). These tests were performed for: a) Individual layers probing local response and b) for bulk CWE probing global response. The structure property relationship showed the most prominent effect of elastic mismatch present among the individual layers and the undulating wavy interfaces in influencing the damage tolerance behavior of CWE. Furthermore, the findings of this study were employed to develop a bio inspired damage tolerant metal-ceramic metal ceramic nanocomposite laminate with elastic mismatch and a degree of undulating interfaces present among the alternating metal ceramic layers. The fracture experiments revealed similar crack deflection behavior as seen in CWE. The knowledge gained from this thesis research will be advantageous in 1) Applied materials sciences: the field of multilayer composites where alternating layers of stiff vs. compliant material along with the introduction of waviness among the layers (similar to WE structure) has showed improved crack deflection abilities and 2) Evolutionary biology and paleontology, where understanding gained from this research can be applied to more complex grinding dentition like modified radial enamel (MRE) found in the grinding dentition of horses, bovids, suids etc., and irregular enamel found in mammoths and elephant
    corecore