312 research outputs found

    Evaluation of immune responses after nanovectorized internal radiotherapy for glioblastomas

    Get PDF
    Contribution issue du 4e Workshop européen, orgnaisé par le Cancéropôle Grand-Ouest du 22 au 25 septembre 2010 à l'Ile de Berder en France, autour du thème "Biology of ionizing radiation".International audienc

    Editorial: Nucleic Acid-Associated Inflammation.

    Get PDF
    Editorial on the Research Topic Nucleic Acid-Associated Inflammation

    Transcriptional Upregulation of NLRC5 by Radiation Drives STING- and Interferon-Independent MHC-I Expression on Cancer Cells and T Cell Cytotoxicity.

    Get PDF
    Radiation therapy has been shown to enhance the efficacy of various T cell-targeted immunotherapies that improve antigen-specific T cell expansion, T regulatory cell depletion, or effector T cell function. Additionally, radiation therapy has been proposed as a means to recruit T cells to the treatment site and modulate cancer cells as effector T cell targets. The significance of these features remains unclear. We set out to determine, in checkpoint inhibitor resistant models, which components of radiation are primarily responsible for overcoming this resistance. In order to model the vaccination effect of radiation, we used a Listeria monocytogenes based vaccine to generate a large population of tumor antigen specific T cells but found that the presence of cells with cytotoxic capacity was unable to replicate the efficacy of radiation with combination checkpoint blockade. Instead, we demonstrated that a major role of radiation was to increase the susceptibility of surviving cancer cells to CD8+ T cell-mediated control through enhanced MHC-I expression. We observed a novel mechanism of genetic induction of MHC-I in cancer cells through upregulation of the MHC-I transactivator NLRC5. These data support the critical role of local modulation of tumors by radiation to improve tumor control with combination immunotherapy

    Lipid Nanocapsules Loaded with Rhenium-188 Reduce Tumor Progression in a Rat Hepatocellular Carcinoma Model

    Get PDF
    International audienceBACKGROUND: Due to their nanometric scale (50 nm) along with their biomimetic properties, lipid nanocapsules loaded with Rhenium-188 (LNC(188)Re-SSS) constitute a promising radiopharmaceutical carrier for hepatocellular carcinoma treatment as its size may improve tumor penetration in comparison with microspheres devices. This study was conducted to confirm the feasibility and to assess the efficacy of internal radiation with LNC(188)Re-SSS in a chemically induced hepatocellular carcinoma rat model. METHODOLOGY/PRINCIPAL FINDINGS: Animals were treated with an injection of LNC(188)Re-SSS (80 MBq or 120 MBq). The treated animals (80 MBq, n = 12; 120 MBq, n = 11) were compared with sham (n = 12), blank LNC (n = 7) and (188)Re-perrhenate (n = 4) animals. The evaluation criteria included rat survival, tumor volume assessment, and vascular endothelial growth factor quantification. Following treatment with LNC(188)Re-SSS (80 MBq) therapeutic efficiency was demonstrated by an increase in the median survival from 54 to 107% compared with control groups with up to 7 long-term survivors in the LNC(188)Re-SSS group. Decreased vascular endothelial growth factor expression in the treated rats could indicate alterations in the angiogenesis process. CONCLUSIONS/SIGNIFICANCE: Overall, these results demonstrate that internal radiation with LNC(188)Re-SSS is a promising new strategy for hepatocellular carcinoma treatment

    Is the combination of immunotherapy and radiotherapy in non-small cell lung cancer a feasible and effective approach?

    Get PDF
    For many years, conventional oncologic treatments such as surgery, chemotherapy, and radiotherapy (RT) have dominated the field of non-small-cell lung cancer (NSCLC). The recent introduction of immunotherapy (IT) in clinical practice, especially strategies targeting negative regulators of the immune system, so-called immune checkpoint inhibitors, has led to a paradigm shift in lung cancer as in many other solid tumors. Although antibodies against programmed death protein-1 (PD-1) and programmed death ligand-1 (PD-L1) are currently on the forefront of the immuno-oncology field, the first efforts to eradicate cancer by exploiting the host's immune system date back to several decades ago. Even then, researchers aimed to explore the addition of RT to IT strategies in NSCLC patients, attributing its potential benefit to local control of target lesions through direct and indirect DNA damage in cancer cells. However, recent pre-clinical and clinical data have shown RT may also modify antitumor immune responses through induction of immunogenic cell death and reprogramming of the tumor microenvironment. This has led many to reexamine RT as a partner therapy to immuno-oncology treatments and investigate their potential synergy in an exponentially growing number of clinical trials. Herein, the authors review the rationale of combining IT and RT across all NSCLC disease stages and summarize both historical and current clinical evidence surrounding these combination strategies. Furthermore, an overview is provided of active clinical trials exploring the IT-RT concept in different settings of NSCLC
    • …
    corecore