145 research outputs found

    Flexibility in the receptor-binding domain of the enzymatic colicin E9 is required for toxicity against Escherichia coli cells

    Get PDF
    The events that occur after the binding of the enzymatic E colicins to Escherichia coli BtuB receptors that lead to translocation of the cytotoxic domain into the periplasmic space and, ultimately, cell killing are poorly understood. It has been suggested that unfolding of the coiled-coil Mull receptor binding domain of the E colicins may be an essential step that leads to the loss of immunity protein from the colicin and immunity protein complex and then triggers the events of translocation. We introduced pairs of cysteine mutations into the receptor binding domain of colicin E9 (ColE9) that resulted in the formation of a disulfide bond located near the middle or the top of the R domain. After dithiothreitol reduction, the ColE9 protein with the mutations L359C and F412C (ColE9 L359C-F412C) and the ColE9 protein with the mutations Y324C and L447C (ColE9 Y324C-L447C) were slightly less active than equivalent concentrations of ColE9. On oxidation with diamide, no significant biological activity was seen with the ColE9 L359C-F412C and the ColE9 Y324C-L447C mutant proteins; however diamide had no effect on the activity of ColE9. The presence of a disulfide bond was confirmed in both of the oxidized, mutant proteins by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The loss of biological activity of the disulfide-containing mutant proteins was not due to an indirect effect on the properties of the translocation or DNase domains of the mutant colicins. The data are consistent with a requirement for the flexibility of the coiled-coil R domain after binding to BtuB

    Differential expression of ADAMTS -1, -4, -5 and TIMP -3 in rat spinal cord at different stages of acute experimental autoimmune encephalomyelitis

    Get PDF
    Experimental autoimmune encephalomyelitis (EAE) is an animal model of inflammatory demyelination, a pathological event common to multiple sclerosis (MS). During CNS inflammation there are alterations in the extracellular matrix (ECM). A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) -1, -4 and -5 are proteases present in the CNS, which are able to cleave the aggregating chondroitin sulphate proteoglycans, aggrecan, phosphacan, neurocan and brevican. It is therefore important to investigate changes in their expression in different stages of EAE induction. We have investigated expression of ADAMTS-1, -4, -5 and Tissue inhibitor of metalloproteinase (TIMP) -3, by real-time RT-PCR. We have also examined protein expression of ADAMTS-1, -4 and -5 by western blotting and immunocytochemistry in spinal cord from animals at different stages of disease progression. Our study demonstrated a decrease in ADAMTS-4 mRNA and protein expression. TIMP-3 was decreased at the mRNA level although protein levels were increased in diseased animals compared to controls. Our study identifies changes in ADAMTS expression during the course of CNS inflammation which may contribute to ECM degradation and disease progression.</p

    ADAMTS9-regulated pericellular matrix dynamics governs focal adhesion-dependent smooth muscle differentiation

    Get PDF
    Focal adhesions anchor cells to extracellular matrix (ECM) and direct assembly of a pre-stressed actin cytoskeleton. They act as a cellular sensor and regulator, linking ECM to the nucleus. Here, we identify proteolytic turnover of the anti-adhesive proteoglycan versican as a requirement for maintenance of smooth muscle cell (SMC) focal adhesions. Using conditional deletion in mice, we show that ADAMTS9, a secreted metalloprotease, is required for myometrial activation during late gestation and for parturition. Through knockdown of ADAMTS9 in uterine SMC, and manipulation of pericellular versican via knockdown or proteolysis, we demonstrate that regulated pericellular matrix dynamics is essential for focal adhesion maintenance. By influencing focal adhesion formation, pericellular versican acts upstream of cytoskeletal assembly and SMC differentiation. Thus, pericellular versican proteolysis by ADAMTS9 balances pro- and anti-adhesive forces to maintain an SMC phenotype, providing a concrete example of the dynamic reciprocity of cells and their ECM

    ADAMTS -1 and -4 are up-regulated following transient middle cerebral artery occlusion in the rat and their expression is modulated by TNF in cultured astrocytes

    Get PDF
    ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) enzymes are a recently described group of metalloproteinases. The substrates degraded by ADAMTS-1, -4 and -5 suggests that they play a role in turnover of extracellular matrix in the central nervous system (CNS). ADAMTS-1 is also known to exhibit anti-angiogenic activity. Their main endogenous inhibitor is tissue inhibitor of metalloproteinases (TIMP)-3. The present study was designed to investigate ADAMTS-1, -4 and -5 and TIMP-3 expression after experimental cerebral ischaemia and to examine whether cytokines known to be up-regulated in stroke could alter their expression by astrocytes in vitro. Focal cerebral ischaemia was induced by transient middle cerebral artery occlusion in the rat using the filament method. Our results demonstrate a significant increase in expression of ADAMTS-1 and -4 in the occluded hemisphere but no significant change in TIMP-3. This was accompanied by an increase in mRNA levels for interleukin (IL)-1, IL-1 receptor antagonist (IL-1ra) and tumour necrosis factor (TNF). ADAMTS-4 mRNA and protein was up-regulated by TNF in primary human astrocyte cultures. The increased ADAMTS-1 and -4 in experimental stroke, together with no change in TIMP-3, may promote ECM breakdown after stroke, enabling infiltration of inflammatory cells and contribute to brain injury. In vitro studies suggest that the in vivo modulation of ADAMTS-1 and -4 may be controlled in part by TNF.</p

    Immunity protein release from a cell-bound nuclease colicin complex requires global conformational rearrangement

    Get PDF
    Nuclease colicins bind their target receptor BtuB in the outer membrane of sensitive Escherichia coli cells in the form of a high-affinity complex with their cognate immunity proteins. The release of the immunity protein from the colicin complex is a prerequisite for cell entry of the colicin and occurs via a process that is still relatively poorly understood. We have previously shown that an energy input in the form of the cytoplasmic membrane proton motive force is required to promote immunity protein (Im9) release from the colicin E9/Im9 complex and colicin cell entry. We report here that engineering rigidity in the structured part of the colicin translocation domain via the introduction of disulfide bonds prevents immunity protein release from the colicin complex. Reduction of the disulfide bond by the addition of DTT leads to immunity protein release and resumption of activity. Similarly, the introduction of a disulfide bond in the DNase domain previously shown to abolish channel formation in planar bilayers also prevented immunity protein release. Importantly, all disulfide bonds, in the translocation as well as the DNase domain, also abolished the biological activity of the Im9-free colicin E9, the reduction of which led to a resumption of activity. Our results show, for the first time, that conformational flexibility in the structured translocation and DNase domains of a nuclease colicin is essential for immunity protein release, providing further evidence for the hypothesis that global structural rearrangement of the colicin molecule is required for disassembly of this high-affinity toxin-immunity protein complex prior to outer membrane translocation

    Co-culture of mechanically injured cartilage with joint capsule tissue alters chondrocyte expression patterns and increases ADAMTS5 production

    Get PDF
    We studied changes in chondrocyte gene expression, aggrecan degradation, and aggrecanase production and activity in normal and mechanically injured cartilage co-cultured with joint capsule tissue. Chondrocyte expression of 21 genes was measured at 1, 2, 4, 6, 12, and 24 h after treatment; clustering analysis enabled identification of co-expression profiles. Aggrecan fragments retained in cartilage and released to medium and loss of cartilage sGAG were quantified. Increased expression of MMP-13 and ADAMTS4 clustered with effects of co-culture, while increased expression of ADAMTS5, MMP-3, TGF-β, c-fos, c-jun clustered with cartilage injury. ADAMTS5 protein within cartilage (immunohistochemistry) increased following injury and with co-culture. Cartilage sGAG decreased over 16-days, most severely following injury plus co-culture. Cartilage aggrecan was cleaved at aggrecanase sites in the interglobular and C-terminal domains, resulting in loss of the G3 domain, especially after injury plus co-culture. Together, these results support the hypothesis that interactions between injured cartilage and other joint tissues are important in matrix catabolism after joint injury

    Glycan-based near-infrared fluorescent (NIRF) imaging of gastrointestinal tumors: a preclinical proof-of-conceptIn vivostudy

    Get PDF
    Purpose Aberrantly expressed glycans in cancer are of particular interest for tumor targeting. This proof-of-conceptin vivostudy aims to validate the use of aberrant Lewis glycans as target for antibody-based, real-time imaging of gastrointestinal cancers. Procedures Immunohistochemical (IHC) staining with monoclonal antibody FG88.2, targeting Lewis(a/c/x), was performed on gastrointestinal tumors and their healthy counterparts. Then, FG88.2 and its chimeric human/mouse variant CH88.2 were conjugated with near-infrared fluorescent (NIRF) IRDye 800CW for real-time imaging. Specific binding was evaluatedin vitroon human gastrointestinal cancer cell lines with cell-based plate assays, flow cytometry, and immune-fluorescence microscopy. Subsequently, mice bearing human colon and pancreatic subcutaneous tumors were imagedin vivoafter intravenous administration of 1 nmol (150 mu g) CH88.2-800CW with the clinical Artemis NIRF imaging system using the Pearl Trilogy small animal imager as reference. One week post-injection of the tracer, tumors and organs were resected and tracer uptake was analyzedex vivo. Results IHC analysis showed strong FG88.2 staining on colonic, gastric, and pancreatic tumors, while staining on their normal tissue counterparts was limited. Next, human cancer cell lines HT-29 (colon) and BxPC-3 and PANC-1 (both pancreatic) were identified as respectively high, moderate, and low Lewis(a/c/x)-expressing. Using the clinical NIRF camera system for tumor-bearing mice, a mean tumor-to-background ratio (TBR) of 2.2 +/- 0.3 (Pearl: 3.1 +/- 0.8) was observed in the HT-29 tumors and a TBR of 1.8 +/- 0.3 (Pearl: 1.9 +/- 0.5) was achieved in the moderate expression BxPC-3 model. In both models, tumors could be adequately localized and delineated by NIRF for up to 1 week.Ex vivoanalysis confirmed full tumor penetration of the tracer and low fluorescence signals in other organs. Conclusions Using a novel chimeric Lewis(a/c/x)-targeting tracer in combination with a clinical NIRF imager, we demonstrate the potential of targeting Lewis glycans for fluorescence-guided surgery of gastrointestinal tumors.Surgical oncolog

    Targeting glycans and heavily glycosylated proteins for tumor imaging

    Get PDF
    Simple SummaryDistinguishing malignancy from healthy tissue is essential for oncologic surgery. Targeted imaging during an operation aids the surgeon to operate better. The present tracers for detecting cancer are directed against proteins that are overexpressed on the membrane of tumor cells. This review evaluates the use of tumor-associated sugar molecules as an alternative for proteins to image cancer tissue. These sugar molecules are present as glycans on glycosylated membrane proteins and glycolipids. Due to their location and large numbers per cell, these sugar molecules might be better targets for tumor imaging than proteins.Real-time tumor imaging techniques are increasingly used in oncological surgery, but still need to be supplemented with novel targeted tracers, providing specific tumor tissue detection based on intra-tumoral processes or protein expression. To maximize tumor/non-tumor contrast, targets should be highly and homogenously expressed on tumor tissue only, preferably from the earliest developmental stage onward. Unfortunately, most evaluated tumor-associated proteins appear not to meet all of these criteria. Thus, the quest for ideal targets continues. Aberrant glycosylation of proteins and lipids is a fundamental hallmark of almost all cancer types and contributes to tumor progression. Additionally, overexpression of glycoproteins that carry aberrant glycans, such as mucins and proteoglycans, is observed. Selected tumor-associated glyco-antigens are abundantly expressed and could, thus, be ideal candidates for targeted tumor imaging. Nevertheless, glycan-based tumor imaging is still in its infancy. In this review, we highlight the potential of glycans, and heavily glycosylated proteoglycans and mucins as targets for multimodal tumor imaging by discussing the preclinical and clinical accomplishments within this field. Additionally, we describe the major advantages and limitations of targeting glycans compared to cancer-associated proteins. Lastly, by providing a brief overview of the most attractive tumor-associated glycans and glycosylated proteins in association with their respective tumor types, we set out the way for implementing glycan-based imaging in a clinical practice.Surgical oncolog

    The terminal sialic acid of stage-specific embryonic antigen-4 has a crucial role in binding to a cancer-targeting antibody

    Get PDF
    Cancer remains a leading cause of morbidity and mortality worldwide, requiring ongoing development of targeted therapeutics such as monoclonal antibodies. Carbohydrates on embryonic cells are often highly expressed in cancer and are therefore attractive targets for antibodies. Stage-specific embryonic antigen-4 (SSEA-4) is one such glycolipid target expressed in many cancers, including breast and ovarian carcinomas. Here, we defined the structural basis for recognition of SSEA-4 by a novel monospecific chimeric antibody (ch28/11). Five X-ray structures of ch28/11 Fab complexes with the SSEA-4 glycan headgroup, determined at 1.5–2.7 Å resolutions, displayed highly similar three-dimensional structures indicating a stable binding mode. The structures also revealed that by adopting a horseshoe-shaped conformation in a deep groove, the glycan headgroup likely sits flat against the membrane to allow the antibody to interact with SSEA-4 on cancer cells. Moreover, we found that the terminal sialic acid of SSEA-4 plays a dominant role in dictating the exquisite specificity of the ch28/11 antibody. This observation was further supported by molecular dynamics simulations of the ch28/11-glycan complex, which show that SSEA-4 is stabilized by its terminal sialic acid, unlike SSEA-3, which lacks this sialic acid modification. These high-resolution views of how a glycolipid interacts with an antibody may help to advance a new class of cancer-targeting immunotherapy

    An immunohistochemical evaluation of tumor-associated glycans and mucins as targets for molecular imaging of Pancreatic Ductal Adenocarcinoma

    Get PDF
    Simple Summary: Distinguishing pancreatic cancer from healthy tissue before and during surgery can be enhanced by using molecular tracers directed at molecules on tumor cells allowing high-contrast visualization of tumor tissue, eventually improving diagnosis and surgical removal. Albeit sugar molecules and proteins carrying a large amount of sugars-mucins- have gained significant interest as tumor-specific targets, their relative presence on structures surrounding tumor tissues and lymph node metastases is unknown. The current study shows that the presence of several, but not all, investigated sugar molecules and mucins on pancreatic cancer cells is higher compared to surrounding tissues. Moreover, given their abundance on tumor cells in lymph nodes and their absence on normal lymph nodes, all investigated targets are high-potential targets for visualization of lymph node metastases. This study paves the way for the development of molecular tracers against the targets evaluated herein to allow improvement of pancreatic cancer treatment.Targeted molecular imaging may overcome current challenges in the preoperative and intraoperative delineation of pancreatic ductal adenocarcinoma (PDAC). Tumor-associated glycans Le(a/c/x), sdi-Le(a), sLe(a), sLe(x), sTn as well as mucin-1 (MUC1) and mucin-5AC (MU5AC) have gained significant interest as targets for PDAC imaging. To evaluate their PDAC molecular imaging potential, biomarker expression was determined using immunohistochemistry on PDAC, (surrounding) chronic pancreatitis (CP), healthy pancreatic, duodenum, positive (LN+) and negative lymph node (LN-) tissues, and quantified using a semi-automated digital image analysis workflow. Positive expression on PDAC tissues was found on 83% for Le(a/c/x), 94% for sdi-Le(a), 98% for sLe(a), 90% for sLe(x), 88% for sTn, 96% for MUC1 and 67% for MUC5AC, where all were not affected by the application of neoadjuvant therapy. Compared to PDAC, all biomarkers were significantly lower expressed on CP, healthy pancreatic and duodenal tissues, except for sTn and MUC1, which showed a strong expression on duodenum (sTn tumor:duodenum ratio: 0.6, p 0.9999), respectively. All biomarkers are suitable targets for correct identification of LN+, as well as the distinction of LN+ from LN- tissues. To conclude, this study paves the way for the development and evaluation of Le(a/c/x)-, sdi-Le(a)-, sLe(a)-, sLe(x)- and MUC5AC-specific tracers for molecular imaging of PDAC imaging and their subsequent introduction into the clinic.Surgical oncolog
    • …
    corecore