64 research outputs found

    Comparative Morphology of the Penis and Clitoris in Four Species of Moles (Talpidae).

    Get PDF
    The penile and clitoral anatomy of four species of Talpid moles (broad-footed, star-nosed, hairy-tailed, and Japanese shrew moles) were investigated to define penile and clitoral anatomy and to examine the relationship of the clitoral anatomy with the presence or absence of ovotestes. The ovotestis contains ovarian tissue and glandular tissue resembling fetal testicular tissue and can produce androgens. The ovotestis is present in star-nosed and hairy-tailed moles, but not in broad-footed and Japanese shrew moles. Using histology, three-dimensional reconstruction, and morphometric analysis, sexual dimorphism was examined with regard to a nine feature masculine trait score that included perineal appendage length (prepuce), anogenital distance, and presence/absence of bone. The presence/absence of ovotestes was discordant in all four mole species for sex differentiation features. For many sex differentiation features, discordance with ovotestes was observed in at least one mole species. The degree of concordance with ovotestes was highest for hairy-tailed moles and lowest for broad-footed moles. In relationship to phylogenetic clade, sex differentiation features also did not correlate with the similarity/divergence of the features and presence/absence of ovotestes. Hairy-tailed and Japanese shrew moles reside in separated clades, but they exhibit a high degree of congruence. Broad-footed and hairy-tailed moles reside within the same clade but had one of the lowest correlations in features and presence/absence of ovotestes. Thus, phylogenetic affinity and the presence/absence of ovotestes are poor predictors for most sex differentiation features within mole external genitalia

    Analysis of Male Pheromones That Accelerate Female Reproductive Organ Development

    Get PDF
    Male odors can influence a female's reproductive physiology. In the mouse, the odor of male urine results in an early onset of female puberty. Several volatile and protein pheromones have previously been reported to each account for this bioactivity. Here we bioassay inbred BALB/cJ females to study pheromone-accelerated uterine growth, a developmental hallmark of puberty. We evaluate the response of wild-type and mutant mice lacking a specialized sensory transduction channel, TrpC2, and find TrpC2 function to be necessary for pheromone-mediated uterine growth. We analyze the relative effectiveness of pheromones previously identified to accelerate puberty through direct bioassay and find none to significantly accelerate uterine growth in BALB/cJ females. Complementary to this analysis, we have devised a strategy of partial purification of the uterine growth bioactivity from male urine and applied it to purify bioactivity from three different laboratory strains. The biochemical characteristics of the active fraction of all three strains are inconsistent with that of previously known pheromones. When directly analyzed, we are unable to detect previously known pheromones in urine fractions that generate uterine growth. Our analysis indicates that pheromones emitted by males to advance female puberty remain to be identified

    Decrease in Anogenital Distance among Male Infants with Prenatal Phthalate Exposure

    Get PDF
    Prenatal phthalate exposure impairs testicular function and shortens anogenital distance (AGD) in male rodents. We present data from the first study to examine AGD and other genital measurements in relation to prenatal phthalate exposure in humans. A standardized measure of AGD was obtained in 134 boys 2–36 months of age. AGD was significantly correlated with penile volume (R = 0.27, p = 0.001) and the proportion of boys with incomplete testicular descent (R = 0.20, p = 0.02). We defined the anogenital index (AGI) as AGD divided by weight at examination [AGI = AGD/weight (mm/kg)] and calculated the age-adjusted AGI by regression analysis. We examined nine phthalate monoester metabolites, measured in prenatal urine samples, as predictors of age-adjusted AGI in regression and categorical analyses that included all participants with prenatal urine samples (n = 85). Urinary concentrations of four phthalate metabolites [monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP), and monoisobutyl phthalate (MiBP)] were inversely related to AGI. After adjusting for age at examination, p-values for regression coefficients ranged from 0.007 to 0.097. Comparing boys with prenatal MBP concentration in the highest quartile with those in the lowest quartile, the odds ratio for a shorter than expected AGI was 10.2 (95% confidence interval, 2.5 to 42.2). The corresponding odds ratios for MEP, MBzP, and MiBP were 4.7, 3.8, and 9.1, respectively (all p-values < 0.05). We defined a summary phthalate score to quantify joint exposure to these four phthalate metabolites. The age-adjusted AGI decreased significantly with increasing phthalate score (p-value for slope = 0.009). The associations between male genital development and phthalate exposure seen here are consistent with the phthalate-related syndrome of incomplete virilization that has been reported in prenatally exposed rodents. The median concentrations of phthalate metabolites that are associated with short AGI and incomplete testicular descent are below those found in one-quarter of the female population of the United States, based on a nationwide sample. These data support the hypothesis that prenatal phthalate exposure at environmental levels can adversely affect male reproductive development in humans

    Cellular composition characterizing postnatal development and maturation of the mouse brain and spinal cord

    Get PDF
    The process of development, maturation, and regression in the central nervous system (CNS) are genetically programmed and influenced by environment. Hitherto, most research efforts have focused on either the early development of the CNS or the late changes associated with aging, whereas an important period corresponding to adolescence has been overlooked. In this study, we searched for age-dependent changes in the number of cells that compose the CNS (divided into isocortex, hippocampus, olfactory bulb, cerebellum, ‘rest of the brain’, and spinal cord) and the pituitary gland in 4–40-week-old C57BL6 mice, using the isotropic fractionator method in combination with neuronal nuclear protein as a marker for neuronal cells. We found that all CNS structures, except for the isocortex, increased in mass in the period of 4–15 weeks. Over the same period, the absolute number of neurons significantly increased in the olfactory bulb and cerebellum while non-neuronal cell numbers increased in the ‘rest of the brain’ and isocortex. Along with the gain in body length and weight, the pituitary gland also increased in mass and cell number, the latter correlating well with changes of the brain and spinal cord mass. The majority of the age-dependent alterations (e.g., somatic parameters, relative brain mass, number of pituitary cells, and cellular composition of the cerebellum, isocortex, rest of the brain, and spinal cord) occur rapidly between the 4th and 11th postnatal weeks. This period includes murine adolescence, underscoring the significance of this stage in the postnatal development of the mouse CNS

    Thermal behaviour of Anopheles stephensi in response to infection with malaria and fungal entomopathogens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Temperature is a critical determinant of the development of malaria parasites in mosquitoes, and hence the geographic distribution of malaria risk, but little is known about the thermal preferences of <it>Anopheles</it>. A number of other insects modify their thermal behaviour in response to infection. These alterations can be beneficial for the insect or for the infectious agent. Given current interest in developing fungal biopesticides for control of mosquitoes, <it>Anopheles stephensi </it>were examined to test whether mosquitoes showed thermally-mediated behaviour in response to infection with fungal entomopathogens and the rodent malaria, <it>Plasmodium yoelii</it>.</p> <p>Methods</p> <p>Over two experiments, groups of <it>An. stephensi </it>were infected with one of three entomopathogenic fungi, and/or <it>P. yoelii</it>. Infected and uninfected mosquitoes were released on to a thermal gradient (14 – 38°C) for "snapshot" assessments of thermal preference during the first five days post-infection. Mosquito survival was monitored for eight days and, where appropriate, oocyst prevalence and intensity was assessed.</p> <p>Results and conclusion</p> <p>Both infected and uninfected <it>An. stephensi </it>showed a non-random distribution on the gradient, indicating some capacity to behaviourally thermoregulate. However, chosen resting temperatures were not altered by any of the infections. There is thus no evidence that thermally-mediated behaviours play a role in determining malaria prevalence or that they will influence the performance of fungal biopesticides against adult <it>Anopheles</it>.</p

    Individual Facial Coloration in Male Eulemur fulvus rufus: A Condition-dependent Ornament?

    Get PDF
    Researchers studying individual variation in conspicuous skin coloration in primates have suggested that color indicates male quality. Although primate fur color can also be flamboyant, the potential condition dependence and thus signaling function of fur remains poorly studied. We studied sources of variation in sexually dichromatic facial hair coloration in red-fronted lemurs (Eulemur fulvus rufus). We collected data on 13 adult males in Kirindy Forest, Madagascar, during two study periods in 2006 and 2007, to determine whether variation in facial hair coloration correlates with male age, rank, androgen status, and reproductive success. We quantified facial hair coloration via standardized digital photographs of each male, assessed androgen status using fecal hormone measurements, and obtained data on reproductive success through genetic paternity analyses. Male facial hair coloration showed high individual variation, and baseline coloration was related to individual androgen status but not to any other parameter tested. Color did not reflect rapid androgen changes during the mating season. However, pronounced long-term changes in androgen levels between years were accompanied by changes in facial hair coloration. Our data suggest that facial hair coloration in red-fronted lemur males is under proximate control of androgens and may provide some information about male quality, but it does not correlate with dominance rank or male reproductive success

    You Mate, I Mate: Macaque Females Synchronize Sex not Cycles

    Get PDF
    Extended female sexuality in species living in multimale-multifemale groups appears to enhance benefits from multiple males. Mating with many males, however, requires a low female monopolizability, which is affected by the spatiotemporal distribution of receptive females. Ovarian cycle synchrony potentially promotes overlapping receptivity if fertile and receptive periods are tightly linked. In primates, however, mating is often decoupled from hormonal control, hence reducing the need for synchronizing ovarian events. Here, we test the alternative hypothesis that females behaviorally coordinate their receptivity while simultaneously investigating ovarian cycle synchrony in wild, seasonal Assamese macaques (Macaca assamensis), a promiscuous species with extremely extended female sexuality. Using fecal hormone analysis to assess ovarian activity we show that fertile phases are randomly distributed, and that dyadic spatial proximity does not affect their distribution. We present evidence for mating synchrony, i.e., the occurrence of the females' receptivity was significantly associated with the proportion of other females mating on a given day. Our results suggest social facilitation of mating synchrony, which explains (i) the high number of simultaneously receptive females, and (ii) the low male mating skew in this species. Active mating synchronization may serve to enhance the benefits of extended female sexuality, and may proximately explain its patterning and maintenance

    Effects of the social environment during adolescence on the development of social behaviour, hormones and morphology in male zebra finches (Taeniopygia guttata)

    Get PDF
    Abstract Background Individual differences in behaviour are widespread in the animal kingdom and often influenced by the size or composition of the social group during early development. In many vertebrates the effects of social interactions early in life on adult behaviour are mediated by changes in maturation and physiology. Specifically, increases in androgens and glucocorticoids in response to social stimulation seem to play a prominent role in shaping behaviour during development. In addition to the prenatal and early postnatal phase, adolescence has more recently been identified as an important period during which adult behaviour and physiology are shaped by the social environment, which so far has been studied mostly in mammals. We raised zebra finches ( Taeniopygia guttata ) under three environmental conditions differing in social complexity during adolescence\ua0-\ua0juvenile pairs, juvenile groups, and mixed-age groups - and studied males\u2019 behavioural, endocrine, and morphological maturation, and later their adult behaviour. Results As expected, group-housed males exhibited higher frequencies of social interactions. Group housing also enhanced song during adolescence, plumage development, and the frequency and intensity of adult courtship and aggression. Some traits, however, were affected more in juvenile groups and others in mixed-age groups. Furthermore, a testosterone peak during late adolescence was suppressed in groups with adults. In contrast, corticosterone concentrations did not differ between rearing environments. Unexpectedly, adult courtship in a test situation was lowest in pair-reared males and aggression depended upon the treatment of the opponent with highest rates shown by group-reared males towards pair-reared males. This contrasts with previous findings, possibly due to differences in photoperiod and the acoustic environment. Conclusion Our results support the idea that effects of the adolescent social environment on adult behaviour in vertebrates are mediated by changes in social interactions affecting behavioural and morphological maturation. We found no evidence that long-lasting differences in behaviour reflect testosterone or corticosterone levels during adolescence, although differences between juvenile and mixed-age groups suggest that testosterone and song behaviour during late adolescence may be associated

    Mysid crustaceans as standard models for the screening and testing of endocrine-disrupting chemicals

    Get PDF
    Author Posting. © Springer, 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecotoxicology 16 (2007): 205-219, doi:10.1007/s10646-006-0122-0.Investigative efforts into the potential endocrine-disrupting effects of chemicals have mainly concentrated on vertebrates, with significantly less attention paid to understanding potential endocrine disruption in the invertebrates. Given that invertebrates account for at least 95% of all known animal species and are critical to ecosystem structure and function, it remains essential to close this gap in knowledge and research. The lack of progress regarding endocrine disruption in invertebrates is still largely due to: (1) our ignorance of mode-of-action, physiological control, and hormone structure and function in invertebrates; (2) lack of a standardized invertebrate assay; (3) the irrelevance to most invertebrates of the proposed activity-based biological indicators for endocrine disruptor exposure (androgen, estrogen and thyroid); (4) limited field studies. Past and ongoing research efforts using the standard invertebrate toxicity test model, the mysid shrimp, have aimed at addressing some of these issues. The present review serves as an update to a previous publication on the use of mysid shrimp for the evaluation of endocrine disruptors (Verslycke et al., 2004a). It summarizes recent investigative efforts that have significantly advanced our understanding of invertebrate-specific endocrine toxicity, population modeling, field studies, and transgeneration standard test development using the mysid model.Supported by a Fellowship of the Belgian American Educational Foundation
    • 

    corecore