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Abstract

In mammals, prenatal exposure to sex steroid hormones may have profound effects on later behavior and fitness and have
been reported under both laboratory and field conditions. Anogenital distance is a non-invasive measure of prenatal
exposure to sex steroid hormones. While we know that intra-uterine position and litter sex ratio influence anogenital
distance, there are other, heretofore unstudied, factors that could influence anogenital distance, including maternal effects.
We capitalized on a long-term study of wild yellow-bellied marmots (Marmota flaviventris) to study the importance of
maternal effects on explaining variation in anogenital distance and found significant effects. The strength of these effects
varied annually. Taken together, our data highlights the strong variability due to environmental effects, and illustrates the
importance of additive genetic and maternal genetic effects on neonatal anogenital distance. We suspect that, as others
apply recently popularised quantitative genetic techniques to study free-living populations, such effects will be identified in
other systems.
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Introduction

Maternal effects represent the influence of a mother’s genotype

or phenotype to her offspring’s phenotype independently of

additive genetic effects [1] and have numerous implications in a

wide range of species on prenatal (development, immunity, stress

level) and postnatal life (social rank, dispersal, reproductive

performance, etc.) [2–5].

For mammals, the intrauterine environment is a potentially

important source of maternal effects on a variety of life history

traits [6]. Pre-natal exposure to sex steroid hormones emerges

from the complex hormonal environment fetuses are exposed to.

Each individual is exposed to androgens produced by its male

siblings via transplacental and transamniotic diffusion [7].

Testosterone has organisational and activational effects on the

central nervous system, masculinising and defeminising the

behavior exhibited later in life [8,9]. For instance, female rats

(Rattus norvegicus) exposed to neonatal testosterone engaged in more

masculinised impulsive behavior [9]. Similarly, masculinised

yellow-bellied female marmots (Marmota flaviventris) had lower

survival, were more likely to disperse, and had reduced weaning

success compared with females exposed to reduced levels of

intrauterine testosterone [10]. Thus, testosterone is an important

modulator of life-history traits [10].

Apart from male siblings’ testosterone, androgens are secreted

by the mother’s placenta, adrenal glands, and ovaries [11,12], and

they might contribute to offspring defeminisation or masculinisa-

tion. However, the importance of this maternal source has not

been studied in the wild.

Early exposure to androgens is morphologically evident by the

anogenital distance (AGD), the distance between the anus and the

genital papilla. AGD results from the elongation of the perineal

tissue, which is triggered by testosterone during the early

development, and thus, males have larger AGD than females

[13,14]. AGD, at young ages, is thus a proxy of early exposure to

androgens [15,16] and is relatively easy to quantify under field

conditions. Females (of several species) with larger AGD are

masculinized. They are less likely to survive and more likely to

disperse [10], are less likely to become pregnant [17], are less

preferred by males, and have smaller and male-biased litters [18].

Similar findings have been observed as well in humans, including

positive correlations between AGD and fertility in men [19], and

ovarian follicles numbers in women [20].

We studied a population of individually marked wild yellow-

bellied marmots for which litter effects but not maternal effects on

anogenital distance were known: female yellow-bellied marmots’

morphology, behavior, survival, and dispersal are influenced by

the proportion of males in the litter [4,10]. Given the strong

relation between androgenization and life-history traits later in life,

it seems crucial to disentangle the different sources of variation

that might affect the offspring phenotype. For that we fitted an

animal model, a statistical technique designed to decompose
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variance components, to assess how much of the variance in AGD

in neonates was due to maternal, genetic and environmental

effects.

Methods

Ethics Statement
Free-living yellow-bellied marmots were studied under research

protocol ARC 2001-191-01 as well as permits issued by the

Colorado Division of Wildlife. The research protocol was

approved by the UCLA Animal Care Committee on 13 May

2002 and renewed annually. Trapping, measuring, and marking

marmots are routine techniques that have been conducted with no

deleterious consequences for over 50 years in this population of

marmots. By design, marmots were not harmed during the course

of this study.

Experimental Subjects
Yellow-bellied marmots have been studied since 1962 in and

around the Rocky Mountain Biological Laboratory, Gunnison

County, CO, USA (elevation approx. 2890 m). Marmots are

individually marked and followed throughout their lives. Natal

emergence date was determined by daily observations of the

colonies during the active season (mid-April to mid-September). As

soon as they emerged from their natal burrow, pups were trapped,

sexed, ear tagged, and fur marked with Nyanzol fur dye. Assigning

marmots to sex is straightforward and was successfully repeated

during numerous trapping sessions by different observers. Subjects

were weighed using a digital scale (accurate to 25 g) and we

measured the AGD using digital callipers (accuracy 1 mm). Every

summer, new observers were trained to measure AGD accurately

by making multiple AGD measurements on different individuals

until they obtained measurements similar to trained observers.

This training ensured consistency in our measurements across

observers. Since all pups within a litter were not trapped and

measured by the same observers, measurement error due to the

observer should only increase the noise in the data and make it

more difficult to detect significant effects.

Starting in 2002, we took a hair sample from every individual

for DNA parentage assignment using 12 microsatellite loci. This

permitted us to assign (with 95% confidence) paternity and

maternity (for further details about the procedure and the study

population, see [21]). The average litter size for yellow-bellied

marmots is about 3–4 pups but varies from 1 to 10 pups. Females

give birth at most once a year in the burrows, where the pups stay

during lactation. They emerge about 25 days later to start foraging

by themselves [22]. Litter sex-ratio was estimated using all pups

trapped. For AGD analysis, however, we only used those

individuals with full parentage and that were trapped within their

first 10 days following natal emergence because AGD at that age is

not as biased by morphological differences between individuals as

it would be for older individuals [23]. We thus used AGD records

from 564 pups, from 183 different litters, that were produced by

91 different mothers between 2002 and 2010. This represented

67% of all pups observed during that period.

Statistical Analyses
Using the asreml function [24] in the statistical package R,

v.2.14.1 [25], we fitted an animal model [26] to decompose the

variance of AGD into its additive genetic, maternal (environment

and genetic), litter and year components. An animal model is a

particular type of mixed model in which the different individuals

are not considered independent but related to each other by a

matrix of relatedness (most often obtained from a pedigree) [26].

By fitting different random effects that are linked or not linked to a

pedigree, it is thus possible to decompose the variance of a trait

into its genetic and environmental effects. Random effects linked

to the pedigree provide information of additive genetic variance

whereas random effects not linked to the pedigree provide

environmental variance estimates. Since an animal model is a

mixed effect model, additional fixed effects could also be included

to correct for potential biases in the variance estimates.

As fixed effects, we included mass (to correct for differences in

body size), the number of days since emergence at trapping (to

take into account the morphological development of the perineal

tissue), sex (to control for sexual dimorphism), proportion of males

in the litter (to control for litter effects), and litter size (to control for

the number of siblings producing androgens). We tested the

significance of the fixed effects using conditional Wald tests.

For random effects, we first fitted a model including only

maternal identity (to estimate between mother variation), year (to

assess the inter-annual environmental variation), and the identity

of the litter. We then decomposed the maternal effects into its

genetic and environmental components. Thus, we included pup

identity linked to the pedigree (direct additive genetic effect),

maternal identity (maternal environment), maternal identity linked

to the pedigree (maternal genetic), year, and the identity of the

litter. We tested the significance of random effects using a log-

likelihood ratio test comparing the full model to a model without a

specific random effect [27,28]. Variance ratios for random effects

were estimated using the estimated phenotypic variance from the

animal model (i.e., the sum of variance parameters in the model

after accounting for the fixed effects [28]).

Results

As expected from previous analyses [10], we found a significant

effect of litter sex ratio on AGD (Table 1), whereby pups in male-

biased litters had greater AGDs. Male AGD was significantly

greater than female AGD (Table 1) as previously [10,29]. In

addition, larger animals had larger AGDs (Table 1). For our

sample of animals trapped within 10 days of emergence, there was

no significant effect of the number of days since emergence, nor

was there a significant effect of litter size (Table 1).

There were significant maternal effects at the phenotypic level

accounting for 5.8% of the remaining variance (Fig. 1, Table 2,

model 1, LRT = 3.98, df = 1, P = 0.046). When we decomposed

the variance into additive genetic (LRT = 1.51, df = 1, P = 0.219),

Table 1. Estimates (with standard error) of the fixed effects
on anogenital distance of juvenile yellow-bellied marmots
studied at the Rocky Mountain Biological Laboratory.

Estimate (SE) DF F-cond P

(Intercept) 4.899 (0.808) 1, 33.5 36.750 ,0.001

Sex [Male]* 4.205 (0.185) 1, 468.1 514.300 ,0.001

Mass 0.010 (0.001) 1, 388.7 124.100 ,0.001

Litter sex-ratio{ 1.749 (0.452) 1, 243.6 15.000 ,0.001

Litter size 20.058 (0.063) 1, 187.5 0.856 0.356

Days since emergence 20.038 (0.038) 1, 453.7 0.963 0.327

Estimates significantly different from zero are in bold.
*: Females taken as reference
{: N males: N total
DF: numerator, denominator degrees of freedom
F-cond: conditional Wald F-test
doi:10.1371/journal.pone.0092718.t001
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maternal environment (LRT = 1.18, df = 1, P = 0.277), and

maternal genetic (LRT ,0.001, df = 1, P.0.999) components, we

found that none of them were significant (Table 2, model 2).

However, the inclusion of both additive genetic and maternal

genetic effects provided a marginally better fit than when they

were excluded (Fig. 1, Table 2, model 1 vs. model 2: LRT = 5.56,

df = 2, P = 0.053). In addition, additive genetic (LRT = 4.70, df

= 1, P = 0.030) and maternal genetic (LRT = 4.39, df = 1,

P = 0.036) effects were both found to be significant if only one of

them was included in the model and their estimates were larger

(Fig. 1, Table 2, models 3 and 4). This suggests that despite nearly

a decade’s worth of data, we had insufficient power to conclusively

isolate both effects. Nonetheless, it suggests that both effects could

be important. When a maternal genetic effect was included in a

model, the maternal environment explained ,0.001 of the

variance, a finding that suggests that most of the variance between

mothers were due to maternal genetic effects. Litter identity effects

were not significant in any model (Fig. 1, Table 2, all P.0.141).

Year was significant in all models (all P,0.001) and explained

36% of the remaining variance in AGD (Fig. 1, Table 2).

Discussion

We have shown that 6% of the remaining variation in the AGD

of marmot pups is explained by a maternal effect. Our results also

suggest that AGD is heritable and influenced by maternal genetic

and non-maternal environmental effects, thus indicating that a

mother’s genotype produces specific developmental conditions for

her offspring. The presence of a maternal genetic effect on AGD

could result from various mechanisms during gestation or

lactation. It could be due to genetic differences in maternal care,

maternal milk content or maternal stress. A more promising

avenue of explanation might reside in utero during development.

AGD is widely used as a proxy for prenatal androgen hormone

exposure in rodents [14]. Prenatal exposure to androgens may

influence vertebrate life-history traits [29–32], because organiza-

tional and activational events take place at this stage. This

androgen-sensitive prenatal developmental window is thus a key

period that may influence life-history traits. Here, a possible

Figure 1. Variance ratio and components estimated for random
effects from anogenital distance models of juvenile marmots.
The random effects were additive genetic (AG), maternal genetic (MG),
maternal environmental (ME), litter (L) and year (Y) effects. N indicates
that an effect was not fitted in the model and a 0 indicates that the
effect was fitted but estimated as zero. * indicates significant effects.
doi:10.1371/journal.pone.0092718.g001
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explanation of the maternal effects on the AGD would be such a

hormonal transfer from the mother to her pups. However, some

studies in laboratory rats, Rattus norvegicus, have found no

correlation between maternal testosterone levels and fetal testos-

terone levels. However, they did find a negative relationship

between maternal testosterone levels and the capacity of nutrient

transport across the placenta, resulting in reduced fetal growth

[33]. Therefore, maternal testosterone might indirectly affect

offspring AGD by influencing the offspring mass. In primates, in

utero exposure to androgens has been explored mainly through the

study of the 2d:4d ratio. There is evidence that up to 66% of the

variance is explained by additive genetic effects. In addition, there

is evidence of strong environmental effects and for shared

environment effects (including maternal environment and part of

maternal genetic effects) [34–37]. Our results are thus in line with

previous studies suggesting additive genetic, maternal environment

and maternal genetic effects on in utero exposition to androgens.

Nevertheless, further quantitative measurements of maternal and

pup androgen levels, in addition to formal genetic analyses of

maternal endocrinological traits are needed to formally evaluate

the mechanism underlying the maternal genetic effect on AGD.

Such studies, beyond the scope of our study of free-living animals,

would greatly improve our understanding of the mechanistic

origin of the maternal effect we identified.

While the existence of a significant litter composition fixed effect

agrees with previous findings [10], it is noteworthy that the bulk of

the remaining variation in AGD variance was explained by annual

variation. Despite extensive training, personnel turnover between

years could be responsible for some of this variation. However,

other biologically relevant factors could also explain annual

variation. For instance, the current environment (food availability,

predation level, weather conditions) could also explain annual

variation through its influence on maternal stress and body

condition [4,10].

In conclusion, AGD is a widely used proxy of early exposure to

testosterone, and it is related to numerous other life-history traits

[4,10,16,38]. We showed that by decomposing sources of variation

using the animal model, we were able to identify, for the first time

in a wild population, both an additive genetic and a maternal

genetic effect on AGD that is expected to also impact future life-

history traits and fitness of the pups. When other researchers

quantify the magnitude of maternal effects on AGD and its genetic

basis, we will be in a better position to understand its general

importance.
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