95 research outputs found

    Assessable Learning Outcomes for the EU Education and Training Framework core and Function A specific modules: Report of an ETPLAS Working Group

    Get PDF
    Article 23(2) of the European Union Directive 2010/63/EU, which regulates welfare provisions for animals used for scientific purposes, requires that staff involved in the care and use of animals for scientific purposes be adequately educated and trained before they undertake any such work. However, the nature and extent of such training is not stipulated in the Directive. To facilitate Member States in fulfilling their education and training obligations, the European Commission developed a common Education and Training Framework, which was endorsed by the Member States Competent Authorities. An Education & Training Platform for Laboratory Animal Science (ETPLAS) Working Group was recently established to develop further guidance to the Learning Outcomes in the Framework, with the objective to clarify the levels of knowledge and understanding required by trainees, and to provide the criteria by which these Learning Outcomes should be assessed. Using the Framework document as a starting point, assessment criteria for the Learning Outcomes of the modules required for Function A persons (carrying out procedures on animals) for rats, mice and zebrafish were created with sufficient detail to enable trainees, providers and assessors to appreciate the level of knowledge, understanding and skills required to pass each module. Adoption and utilization of this document by training providers and accrediting or approving bodies will harmonize introductory education and training for those involved in the care and use of animals for scientific purposes within the European Union, promote mutual recognition of training within and between Member States and therefore free movement of personnel

    Veterinary students' views on animal patiens and human clients, using Q methodology

    Get PDF
    Veterinarians serve two masters: animal patients and human clients. Both animal patients and human clients have legitimate interests, and conflicting moral claims may flow from these interests. Earlier research concludes that veterinary students are very much aware of the complex and often paradoxical relationship they have and will have with animals. In this article the views of veterinary students about their anticipated relationship with animal patients and human clients are studied. The main part of the article describes discourses of first-year and fourth-year students about their (future) relationship with animals and their caretakers, for which Q-methodology is used. At the end of the article, the discourses are related to the students' gender and their workplace preferences. © 2007 AAVMC

    Opportunities for improving animal welfare in rodent models of epilepsy and seizures

    Get PDF
    Animal models of epilepsy and seizures, mostly involving mice and rats, are used to understand the pathophysiology of the different forms of epilepsy and their comorbidities, to identify biomarkers, and to discover new antiepileptic drugs and treatments for comorbidities. Such models represent an important area for application of the 3Rs (replacement, reduction and refinement of animal use). This report provides background information and recommendations aimed at minimising pain, suffering and distress in rodent models of epilepsy and seizures in order to improve animal welfare and optimise the quality of studies in this area. The report includes practical guidance on principles of choosing a model, induction procedures, in vivo recordings, perioperative care, welfare assessment, humane endpoints, social housing, environmental enrichment, reporting of studies and data sharing. In addition, some model-specific welfare considerations are discussed, and data gaps and areas for further research are identified. The guidance is based upon a systematic review of the scientific literature, survey of the international epilepsy research community, consultation with veterinarians and animal care and welfare officers, and the expert opinion and practical experience of the members of a Working Group convened by the United Kingdom's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs)

    SARS-CoV-2 is transmitted via contact and via the air between ferrets

    Get PDF
    SARS-CoV-2, a coronavirus that emerged in late 2019, has spread rapidly worldwide, and information about the modes of transmission of SARS-CoV-2 among humans is critical to apply appropriate infection control measures and to slow its spread. Here we show that SARS-CoV-2 is transmitted efficiently via direct contact and via the air (via respiratory droplets and/or aerosols) between ferrets, 1 to 3 days and 3 to 7 days after exposure respectively. The pattern of virus shedding in the direct contact and indirect recipient ferrets is similar to that of the inoculated ferrets and infectious virus is isolated from all positive animals, showing that ferrets are productively infected via either route. This study provides experimental evidence of robust transmission of SARS-CoV-2 via the air, supporting the implementation of community-level social distancing measures currently applied in many countries in the world and informing decisions on infection control measures in healthcare settings

    The male fetal biomarker INSL3 reveals substantial hormone exchange between fetuses in early pig gestation

    Get PDF
    The peptide hormone INSL3 is uniquely produced by the fetal testis to promote the transabdominal phase of testicular descent. Because it is fetal sex specific, and is present in only very low amounts in the maternal circulation, INSL3 acts as an ideal biomarker with which to monitor the movement of fetal hormones within the pregnant uterus of a polytocous species, the pig. INSL3 production by the fetal testis begins at around GD30. At GD45 of the ca.114 day gestation, a time at which testicular descent is promoted, INSL3 evidently moves from male to female allantoic compartments, presumably impacting also on the female fetal circulation. At later time-points (GD63, GD92) there is less inter-fetal transfer, although there still appears to be significant INSL3, presumably of male origin, in the plasma of female fetuses. This study thus provides evidence for substantial transfer of a peptide hormone between fetuses, and probably also across the placenta, emphasizing the vulnerability of the fetus to extrinsic hormonal influences within the uterus

    Correction:How the COVID-19 pandemic highlights the necessity of animal research (vol 30, pg R1014, 2020)

    Get PDF
    (Current Biology 30, R1014–R1018; September 21, 2020) As a result of an author oversight in the originally published version of this article, a number of errors were introduced in the author list and affiliations. First, the middle initials were omitted from the names of several authors. Second, the surname of Dr. van Dam was mistakenly written as “Dam.” Third, the first name of author Bernhard Englitz was misspelled as “Bernard” and the surname of author B.J.A. Pollux was misspelled as “Pullox.” Finally, Dr. Keijer's first name was abbreviated rather than written in full. These errors, as well as various errors in the author affiliations, have now been corrected online
    corecore