57 research outputs found

    An urban collection of modern-day large micrometeorites: Evidence for variations in the extraterrestrial dust flux through the Quaternary

    Get PDF
    We report the discovery of significant numbers (500) of large micrometeorites (>100 μm) from rooftops in urban areas. The identification of particles as micrometeorites is achieved on the basis of their compositions, mineralogies, and textures. All particles are silicate-dominated (S type) cosmic spherules with subspherical shapes that form by melting during atmospheric entry and consist of quench crystals of magnesian olivine, relict crystals of forsterite, and iron-bearing olivine within glass. Four particles also contain Ni-rich metal-sulfide beads. Bulk compositions are chondritic apart from depletions in the volatile, moderately volatile, and siderophile elements, as observed in micrometeorites from other sources. The reported particles are likely to have fallen on Earth in the past 6 yr and thus represent the youngest large micrometeorites collected to date. The relative abundance ratio of barred olivine to cryptocrystalline spherule types in the urban particles of 1.45 is shown to be higher than a Quaternary average of ∼0.9, suggesting variations in the extraterrestrial dust flux over the past 800 k.y. Changes in the entry velocities of dust caused by quasi-periodic gravitational perturbation during transport to Earth are suggested to be responsible. Variations in cosmic spherule abundance within the geologic column are thus unavoidable and can be a consequence of dust transport as well as major dust production events

    A new type of highly-vaporized microtektite from the Transantarctic Mountains

    Get PDF
    We report on the discovery of microtektites (microscopic impact glass spherules) in a glacial moraine near Larkman Nunatak in the Transantarctic Mountains, Antarctica. The microtektites were identified based on their physical and chemical properties. Major and trace element compositions of the particles suggest that they may be related to the Australasian strewn field. This would further extend the current strewn field ∼800 km southward. Depletion in volatiles and enrichment in refractory elements in Larkman Nunatak microtektites fit the volatilization trend defined by Australasian microtektites, suggesting that they may represent a new highly vapor fractionated end-member thereof. This observation is supported by their low vesicularity and absence of mineral inclusions. This discovery has significant implications for the formation of microtektites (i.e. their evolution with respect to the distance from the source crater). Finally, the discovery of potentially old (i.e. 0.8 Ma) microtektites in moraine has implications for the stability of the East Antarctic Ice Sheet in the Larkman Nunatak area over the last ∼1 Ma and, as a consequence, the high efficiency of such moraines as traps for other extraterrestrial materials (e.g. micrometeorites and meteoritic ablation debris)

    The parent body controls on cosmic spherule texture: Evidence from the oxygen isotopic compositions of large micrometeorites

    Get PDF
    High-precision oxygen isotopic compositions of eighteen large cosmic spherules (>500 µm diameter) from the Atacama Desert, Chile, were determined using IR-laser fluorination – Isotope Ratio Mass spectrometry. The four discrete isotopic groups defined in a previous study on cosmic spherules from the Transantarctic Mountains (Suavet et al., 2010) were identified, confirming their global distribution. Approximately 50% of the studied cosmic spherules are related to carbonaceous chondrites, 38% to ordinary chondrites and 12% to unknown parent bodies. Approximately 90% of barred olivine (BO) cosmic spherules show oxygen isotopic compositions suggesting they are related to carbonaceous chondrites. Similarly, ∼90% porphyritic olivine (Po) cosmic spherules are related to ordinary chondrites and none can be unambiguously related to carbonaceous chondrites. Other textures are related to all potential parent bodies. The data suggests that the textures of cosmic spherules are mainly controlled by the nature of the precursor rather than by the atmospheric entry parameters. We propose that the Po texture may essentially be formed from a coarse-grained precursor having an ordinary chondritic mineralogy and chemistry. Coarse-grained precursors related to carbonaceous chondrites (i.e. chondrules) are likely to either survive atmospheric entry heating or form V-type cosmic spherules. Due to the limited number of submicron nucleation sites after total melting, ordinary chondrite-related coarse-grained precursors that suffer higher peak temperatures will preferentially form cryptocrystalline (Cc) textures instead of BO textures. Conversely, the BO textures would be mostly related to the fine-grained matrices of carbonaceous chondrites due to the wide range of melting temperatures of their constituent mineral phases, allowing the preservation of submicron nucleation sites. Independently of the nature of the precursors, increasing peak temperatures form glassy textures

    A cosmic dust detection suite for the deep space Gateway

    Get PDF
    The decade of the 2020s promises to be when humanity returns to space beyond Earth orbit, with several nations trying to place astronauts on the Moon, before going further into deep space. As part of such a programme, NASA and partner organisations, propose to build a Deep Space Gateway in lunar orbit by the mid-2020s. This would be visited regularly and offer a platform for science as well as for human activity. Payloads that can be mounted externally on the Gateway offer the chance to, amongst other scientific goals, monitor and observe the dust flux in the vicinity of the Moon. This paper looks at relevant technologies to measure dust which will impact the exposed surface at high speed. Flux estimates and a model payload of detectors are described. It is predicted that the flux is sufficient to permit studies of cometary vs. asteroidal dust and their composition, and to sample interstellar dust streams. This may also be the last opportunity to measure the natural dust flux near the Moon before the current, relatively pristine environment, is contaminated by debris, as humanity’s interest in the Moon generates increased activity in that vicinity in coming decades

    Commentaar Titel 6 Boek 2 BW

    No full text

    Bijdragen aan Commentaar Ondernemingsrecht

    No full text
    corecore